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Abstract

This dissertation documents an object oriented framework which can be used to solve

any linear wave equation. The linear wave equations are expressed in the differential

forms language. This differential forms expression allows a strict discrete interpreta-

tion of the system. The framework is implemented using the Galerkin Finite Element

Method to define the discrete differential forms and operators. Finite element basis

functions including standard scalar Nodal and vector Nedelec basis functions are used

to implement the discrete differential forms resulting in a mixed finite element sys-

tem. Discretizations of scalar and vector wave equations in the time and frequency

domains will be demonstrated in both differential forms and vector calculi. This

framework conserves energy, maintains physical continuity, is valid on unstructured

grids, conditionally stable and second order accurate. Examples including linear

electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
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Chapter 1

Introduction

It is the aim of this dissertation to develop a framework based on differential forms

and the finite element method that correctly models linear wave equations so that all

of the physical quantities inherent in the equations are conserved. A discrete method

that models energy conservation as well as material interface continuity and specific

physical quantity conservation (i.e. charge) is said to be mimetic in that it mimics

the physics of the equation. This is accomplished by utilizing the concepts of the

differential forms calculus on a discrete level. The discrete differential forms are con-

structed via the finite element method such that they maintain all of the properties

of the continuous differential forms. Conservation properties inherent in the con-

tinuous differential forms are maintained in the discrete level, providing a provably

conservative method. This dissertation uses a discrete representation of the differen-

tial forms to create a method for translating continuous linear wave equations into

their discrete representations. The differential forms equation representation allows

a direct interpretation into discrete objects such as physical quantity representations
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and differential operators that define the object oriented nature of the framework.

The specific partial differential equations studied in this dissertation are wave

equations. The wave equations are scalar or vector hyperbolic partial differential

equations describing the transport of field information in time and space. Two and

three-dimensional, linear wave equations in the fields of acoustics, electrodynamics,

elasticity, and magnetohydrodynamics will be presented in vector calculus and dif-

ferential forms for generality. For each of the wave equations listed, a discrete wave

equation and simulations showing the stability and conservation of the method will

be presented. Some of these discretizations have been developed previously. What

this dissertation provides is a new interpretation of these discretizations and new

discretizations based on the framework.

Differential forms [1] are covariant tensors. In a practical view they are four

unique entities in three dimensional space integrated over a point, line, surface or

volume resulting in a number. The collection of differential forms are referred to as

p-forms where the p = 0, 1, 2, 3 in p-forms refers to the rank of the covariant tensor.

Each of the p-forms has specific properties with respect to its continuity, derivative,

and integral as shown in Table 1.1. The various p-forms will be discussed in more

Table 1.1: Properties of the p-forms

Property 0-form 1-form 2-form 3-form

Minimum Continuity Total Tangential Normal None
Integral Point Line Surface Volume

Derivative Grad Div Curl None

detail in Chapter 2.

The Galerkin finite element method will be used to construct a discrete differential
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forms framework. Four specific basis functions are introduced that conform with the

continuous differential forms properties in Table 1.1. One or more of the four basis

functions can be utilized in the linear wave equations. Using more than one basis

function in the discretization is referred to as the mixed finite element method [2].

This dissertation will explain the construction and analysis of a discrete differential

forms based mixed finite element framework. To construct the framework properties

of the discrete differential forms must mimic the continuous differential forms. These

properties include:

• Discrete spaces that mimic continuous spaces.

• Discrete differential operators that mimic continuous operators.

• Metric free discrete differential operators.

• Discrete spaces and differential operators that form exact sequences.

• Automatic conservation of energy, divergence free and curl free fields.

• Correct continuity of fields across material interfaces.

The exact sequence defines a series of differential operators that map a differential

p-form into the next higher p-form for p = 0, 1, 2. If this exact sequence can be

maintained on a discrete level the method can be shown to be conservative. The

construction of the differential operators maintains the physical continuity of the

physical fields by creating discrete differential forms which lie in spaces that are

subspaces of the continuous differential forms. If the previous requirements are met,

then a field that is initially divergence or curl free will remain divergence or curl free.
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In addition to these properties, the discrete differential forms framework will have

the following properties:

• Elimination of spurious modes.

• Well defined on structured and unstructured tessellations.

• Synergy between discrete simulation code for different differential forms.

• Second order accurate in space and time.

• Conditionally stable.

• Allows for scalar and tensor materials with spatial discontinuities.

Spurious modes arise in discrete simulations where the continuity, divergence or curl

of a field are not maintained correctly. If these properties are not maintained then the

discrete system is incorrectly constructed resulting in unphysical solutions. Using the

finite element based discrete differential forms framework eliminates these spurious

modes, allows discrete systems based on unstructured grids, and provides a means to

reuse simulation code across the various wave equations.

In recent years discrete differential forms methods, the finite element version of

mimetic methods, have gained popularity. These methods are based on the idea that

discrete operators should come from the discrete version of the continuous space,

maintaining all of the conservation properties. Ensuring the relation of the discrete

spaces to the continuous spaces allows the creation of differential operators that are

physically accurate, thus leading to methods that conserve all of the physical prop-

erties.
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Research has been performed on finite difference, finite volume, and finite element

discrete differential forms methods [3]. All three methods have been previously devel-

oped without a differential forms interpretation and are currently being reinterpreted

in terms of discrete differential forms.

The definitive mimetic finite difference method for electromangetics is the Finite

Difference Time Domain (FDTD) method. Since the method was introduced by

Yee in 1966 [4] the goal has been to generalize this method to non-orthogonal and

unstructured grids. The methods listed below all reduce to FDTD for orthogonal

structured grids. It is the goal of this dissertation to define operators on unstructured

grids for all of the wave equations listed above that reduce to the corresponding finite

difference operators on structured orthogonal grids.

In the early 1980’s Samarskii, Tishkin, Favorskii and Shashkov [5] [6] [7] devel-

oped the finite difference discrete differential forms method referred to as the Sup-

port Operator Method (SOM). This method forms natural and adjoint differential

operators [8], [9] that form an exact sequence. One limitation of the SOM is the

restriction to non-orthogonal but structured meshes with well defined dual-grids.

Around the same time the support operator method was being developed, Nédélec [10] [11]

was developing vector finite element basis functions that conform to the mininmum

continuity of 1-forms 2-forms. The discrete 1-forms and 2-forms can be totally con-

tinuous but must also maintain tangential and normal continiuty,repectively, across

material interfaces. Standard totally continuous nodal and discontinuous volume cen-

tered scalar basis functions coupled with these new vector basis functions define the

discrete differential forms finite element basis functions. The 2-form or face basis
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functions are the three-dimensional extension of the two-dimensional finite elements

used by Raviart and Thomas [12]. While the finite-element based discrete differ-

ential forms method is mainly being used in the field of electrodynamics [13], [14],

researchers have been actively analyzing the underlying mathematics [15]. The finite

element method based on these basis functions maintains the exact sequence and

continuity properties described in the SOM.

The finite integration technique (FIT) is a conservative finite volume method

developed in 1977 by Weiland [16] for Maxwell’s equations. This technique uses the

integral form of Maxwell’s equations to form the discrete differential operators that

form an exact sequence. Continuity of the various p-forms is also maintained as in the

previous two methods. In a recent paper [17], the FIT is recast in terms of discrete

differential forms where the Curl-Curl operator is shown to be symmetric. Previous

attempts to define a conservative finite volume method resulted in non-symmetric

second order Curl-Curl operators [18] [19] [20] [21]. This non-symmetric Curl-Curl

operator leads to late-time instabilities [22] for electrodynamic simulations in the

time-domain. To counteract these instabilities, dissipative integration schemes may

be used, but these lead to violation of conservation of energy and charge [23].

The main focus of the research demonstrated in this dissertation is the simulation

of optical devices such as step-index optical fibers and photonic band gap devices.

Performing full wave, finite element, time-domain simulations of optical fibers requires

large numbers of elements. This in turn requires a parallel framework. Photonic band

gap devices are devices with complicated periodic structures that are modeled more

appropriately by conforming meshes. The development of a code to model these
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devices lead to a more general method that allowed for simulations of all of the

wave equations listed above. Comparisons of known solutions for the various wave

equations will be performed as well as simulations for complicated optical devices

with no known solution.

This dissertation develops a general discrete differential forms finite element frame-

work for simulating wave equations in the time and frequency domains. The method

will be shown to be second order accurate in space and time, provable stable and

conservative, and valid on unstructured meshes. The wave equations can be solved in

natural or adjoint form while preserving divergence-free or curl-free field constraints

automatically. The second order spatial operators are combinations of a natural and

an adjoint first order operator. In this dissertation the terms natural and adjoint will

refer to the first operator used in the second order spatial operator. Simulations for

linear electrodynamics, linear acoustics, linear elasticity, and magnetohydrodynamics

will be presented.

1.1 Organization

Chapter 2 begins the dissertation with an introduction to Differential Forms and

the equivalent Vector Calculus forms of various wave equations. These initial bound-

ary value problems (IBVP) will be discussed as examples of a general IBVP presented

in differential forms.

Chapter 3 shows derivation of the discrete differential forms framework in which

all of the wave equations are cast. It will be shown that the discrete differential forms

framework preserves the conservation of all physical quantities as well as automatically
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enforcing divergence-free or curl-free field constraints. This is accomplished through

the use of four basis functions corresponding to the four forms. These four basis

functions mimic the properties of continuous and discontinuous scalar fields as well as

tangential and normally continuous vector fields. To solve the wave equations using a

finite element method, they must be placed in variational form. Using the variational

forms and discrete differential forms, the discrete linear system of equations will be

derived.

Chapter 4 defines the linear algebraic method used to solve the sparse linear

systems resulting from the finite element discretization. For each of the operators

utilized in the wave equations, equivalent finite difference stencils are presented with

their corresponding accuracy. The scalability of the linear system solution method

for the two-dimensional electrodynamic wave equation is also discussed.

Chapter 5 presents the analysis of the numerical methods used in the wave equa-

tion simulations. Included in the discussion are results for analyses of stability, dis-

persion, and conservation of energy, charge, and vorticity.

Chapter 6 discusses the parallel implementation used in the simulations. The

wave equation simulations are all based on the same time-stepping and linear sys-

tem solution code. This code only differs in the mass and stiffness matrices and

boundary conditions. The framework is object-oriented implemented in c++ [24]

and python [25] and runs in parallel on three different operating systems and nine

different architectures. The linear system solution and matrix-vector algebra rou-

tines are implemented through the use of PETSc, the portable, extensible toolkit for

scientific computation [26] [27] [28].
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Chapter 7 validates the method using frequency and time-domain simulations for

the wave equations listed in Chapter 2. The accuracy, adaptability, and scalability of

the framework are proven through a set of representative problems.

Chapter 8 presents the results of time-domain simulations for large scale simula-

tions and simulations which require conforming unstructured meshes.

Chapter 9 concludes the dissertation with a summary of the object oriented finite

element framework for wave equations based on differential forms.
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Chapter 2

Wave Equations

This chapter introduces the scalar and vector wave equations used as the example

wave equations throughout the dissertation. They will first be represented in vector

calculus form to define the variables and equations in a commonly accepted format.

Differential forms will then be introduced and used to describe the same equations.

This will be done by defining two prototypical initial boundary value problems and

defining each wave equation in terms of these prototypes. The specific p-form used

to describe the physical variable will be chosen based on the continuity requirement

of the physical variable.

2.1 Acoustic Scalar Wave Equation

In general the scalar wave equation is given by (2.1).

∂2ψ

∂t2
=

1

c2
∇ · ∇ψ (2.1)
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where c is the wave speed. The simulations presented for the scalar wave equation

will be linear acoustic wave equations. The scalar wave equation can be written for

the density ρ, pressure P , or velocity potential φ. The conservation formulas for the

situation where the oscillations are so quick that energy is not transfered through

heat defining an adiabatic system, are given in (2.2),(2.3), and (2.4) where γ is the

ratio of specific heats γ = cp

cv
.

∂ρ

∂t
= −∇ · (ρ~v) (2.2)

∂(ρ~v)

∂t
+ ~v · ∇(ρ~v) = −∇(P ) (2.3)

P = Kργ (2.4)

To linearize the scalar acoustic wave equations, a small perturbation is introduced

around a constant mean value for density (2.5) and pressure (2.6). The velocity is

considered to be a perturbation alone with no mean value (2.7).

ρ(~r, t) = ρ0(~r) + ρ1(~r, t) (2.5)

P (~r, t) = P0(~r) + P1(~r, t) (2.6)

~v(~r, t) = ~v1(~r, t) (2.7)

Combining (2.5),(2.6), and (2.7) with (2.8),(2.9), and (2.10) gives the linear con-

servation equations for linear acoustics.

∂ρ1

∂t
= −ρ0∇ · ~v1 (2.8)

ρ0
∂(~v1)

∂t
= −∇(P1) (2.9)

P1 =
P0γ

ρ0

ρ1 (2.10)
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The first order acoustic wave equations are usually written as functions of the

pressure (2.11) and velocity (2.12).

∂P1

∂t
= −(γP0)∇ · v1 (2.11)

∂v1

∂t
= − 1

ρ0

∇P1 (2.12)

Taking the partial time derivative of the first equation for pressure and substitut-

ing into the first order velocity equation leads to the second-order wave equations for

density (2.13) and pressure (2.14)

∂2ρ1

∂t2
= c2l∇ · ∇ρ1 (2.13)

∂2P1

∂t2
= c2l∇ · ∇P1 (2.14)

where c2l = P0γ
ρ0

is the sound speed. The velocity potential φ (2.15) can be introduced

if the initial distribution of velocities is irrotational (∇× ~v = 0) [29] resulting in the

scalar wave equation for the velocity potential (2.16).

~v = −∇φ (2.15)

∂2φ

∂t2
= c2l∇ · ∇φ (2.16)

In the density scalar wave equation (2.13), the density ρ1 is usually represented as

a discontinuous scalar function. The boundary conditions for this equation are given

in (2.17), where D is the scalar value of the density on the boundary and N is the

scalar value of normal gradient of the density on the boundary.

ρ1 = D on Γd

∇ρ1 · n̂ = N on Γn (2.17)
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To define a well-posed problem for the second-order wave equation an initial condition

and the partial derivative in time of the initial condition are required (2.18). In these

equations the density variable can be replaced by pressure or the velocity potential.

ρ1(0, t) = ρic

∂ρ1(0, t)

∂t
=

∂ρic

∂t
(2.18)

In the pressure scalar wave equation (2.14), the pressure P is usually represented

as a continuous scalar function. The boundary conditions for this equation are given

in (2.19), where D is the scalar value of the pressure on the boundary and N is the

scalar value of the normal gradient of the pressure on the boundary.

P1 = D on Γd

∇P1 · n̂ = N on Γn (2.19)

In some simulations in this dissertation the wave equation will be analyzed in the

frequency domain. This is accomplished by separating the quantity (density, pressure

or velocity potential) into a spatial and time part e.g. ρ1 = ψ(~r)T (t). For the wave

equations, the time part T (t) is harmonic and can be represented by T (t) = e−iωt

where ω is the frequency of oscillation. The linear scalar acoustic wave equation in

the frequency domain after substituting the harmonic time function is given in (2.20)

where the dispersion relation is k = ω
cl

and the spatial part ψ(~r) can be for the density,

pressure or velocity potential.

∇ · ∇ψ − k2ψ = 0 (2.20)

The linear acoustic wave equation is a non-dissipative system, therefore it will

satisfy energy conservation. The wave intensity of the acoustics in units [ W
m2 ] is given
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by the Poynting vector ~S = P1~v1. Looking at the divergence of this quantity gives

(2.21).

∇ · (P1~v1) = ~v1 · ∇P1 + P1∇ · ~v1

∇ · ~S = −ρ0~v1 ·
∂~v1

∂t
− (γP0)

−1P1
∂P1

∂t

∇ · ~S = −1

2

∂

∂t

[

ρo|~v2
1|+ (γP0)

−1P 2
1

]

(2.21)

The power is given by (2.22) where the kinetic energy density is εkin = 1
2
ρ0|~v1

2|

and the potential energy density is εpot = 1
2

P 2
1

γP0
.

∮

Γ

~S · n̂dΓ +
1

2

∂

∂t

∫

Ω

[

ρo|~v2
1|+ (γP0)

−1P 2
1

]

= 0 (2.22)

2.2 Electrodynamic Vector Wave Equation

In their most general form Maxwell’s equations (2.23), contain the electric ~E

and magnetic fields ~H as well as the total electric current density ~Jtot and total

magnetic current density ~Mtot. Maxwell’s equations also include the conservation

of electric and magnetic charge which are comprised of the electric flux density ~D,

magnetic flux density ~B, electric charge density ρec, and magnetic charge density ρmc.

The electric and magnetic fields are represented by vector fields with a continuous

tangential component of the field equal across material boundaries. This is referred

to as tangential continuity [30]. The electric and magnetic flux densities and currents

are represented by vector fields which have the normal component of the field equal

across material boundaries. The flux densities maintain normal continuity across a

material interface [30]. The charge densities are represented by a quantity that can
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be discontinuous between regions of space.

∇× ~E = − ~Mtot

∇× ~H = ~Jtot

∇ · ~D = ρec

∇ · ~B = ρmc (2.23)

The total electric current density can be decomposed into three components (2.24):

a source current density ~Js, the conduction current density ~Jc, and the displacement

current density ~Jd. These electric current densities all have units of amperes per

square meter.

~Jtot = ~Js + ~Jx + ~Jd

~Jd =
∂ ~D

∂t
(2.24)

The total magnetic current density can also be decomposed into three components

(2.25): a source current density ~Ms, a fictitious “conduction” current density ~Mc, and

the displacement current density ~Md.

~Mtot = ~Ms + ~Mx + ~Md

~Md =
∂ ~B

∂t
(2.25)

This dissertation will analyze only the linear Maxwell’s equations in charge free

regions. This leads to linear relations between the electric and magnetic fields and

their corresponding flux densities. These linear relations are given in (2.26), where

ε,µ,σE and σM are tensor quantities corresponding to the electric permittivity, mag-
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netic permeability, electric conductivity, and magnetic conductivity respectively.

~D = ε ~E

~B = µ ~H

~Jc = σE
~E

~Mc = σM
~H (2.26)

Combining the current densities and material relations with the general Maxwell’s

equations (2.23) gives the first-order Maxwell’s equations (2.27).

∂ ~B

∂t
= −∇× ~E − ~Ms − σMµ

−1 ~B

∂ε ~E

∂t
= ∇× µ−1 ~B − ~Js − σE

~E

∇ · ε ~E = 0

∇ · ~B = 0

n̂× ~E = ~EΓ on Γ

~E(0, t) = ~Eic

~B(0, t) = ~Bic (2.27)

The second order vector wave equation for the electric field in an inhomogeneous

charge free domain is constructed by taking the partial derivative of the second equa-

tion and substituting into the first equation in (2.27) giving (2.28).

∂2ε ~E

∂t2
+ (σE + µ−1σMε)

∂ ~E

∂t
+ µ−1σMσE

~E = −∇× µ−1∇× ~E − µ−1σM
~Js

−µ−1∇× ~Ms −
∂ ~Js

∂t

∇ · ε ~E = 0

n̂× ~E = ~EΓ on Γ
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~E(0, t) = ~Eic

∂ ~E(0, t)

∂t
=

∂ ~Eic

∂t
(2.28)

The second order vector wave equation can also be written for the magnetic flux

density in an inhomogeneous charge free domain (2.29).

∂2 ~B

∂t2
+ (σMµ

−1 − ε−1σE)
∂ ~B

∂t
+ ε−1σEσMµ

−1 ~B = −∇× ε−1∇× µ−1 ~B

−ε−1∇× ~Js − ε−1σE
~Ms

∇ · ~B = 0

n̂ · ~B = ~BΓ on Γ

~B(0, t) = ~Bic

∂ ~B(0, t)

∂t
=

∂ ~Bic

∂t
(2.29)

The Maxwell’s equations define a Poynting vector as in the acoustic equations.

In this case the power flow is perpendicular to the electric and magnetic fields. The

divergence of the Poynting vector ~S = ~E × µ−1 ~B integrated over all space gives the

integral form of the conservation of energy for Maxwell’s equations (2.30).

∫

Ω
∇ · ~SdΩ =

∮

Γ
( ~E × µ−1 ~B) · n̂dΓ +

∫

Ω

~E · ~Js +

∫

Ω
µ−1 ~B · ~Ms +

∫

Ω
ε ~E · ∂

~E

∂t
+

∫

Ω
µ−1 ~B · ∂

~B

∂t
+

∫

Ω
σE

~E · ~E +
∫

Ω
µ−1σB

~B · ~B = 0 (2.30)
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2.3 Linear Acoustic Vector Wave Equation

The section on scalar wave equations presents the acoustic wave equations for

pressure, density and vector potential. Combining the first-order equations for veloc-

ity instead of the scalar pressure gives the second-order acoustic wave equation for

velocity (2.31).

∂2~v

∂t2
= c2l∇(∇ · ~v) (2.31)

For the acoustic wave equations, the velocity field is constrained to be irrotational

∇ × ~v = 0. The tangential component of the velocity field at the boundary can be

non-zero even if the normal component is zero. The boundary conditions enforced

for this equation are the normal component of the velocity at the boundary and the

divergence of the velocity, the pressure, at the boundary (2.32).

~v · n̂ = ~D on Γd

∇ · ~v = N on Γn (2.32)

The conservation of energy for this equation is the same as for the scalar case.

The vector acoustic wave equation is another representation of the scalar acoustic

wave equation.

2.4 Linear Elastic Vector Wave Equation

The partial differential equation that describes the linearized displacement field [31], [32], [33]

is given by (2.33).

ρ
∂2~u

∂t2
= ∇ · ¯̄τ + ρ~f (2.33)
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This equation is the conservation of linear and angular momentum where the density,

ρ is constant. The quantity ¯̄τ is the combined stress and strain tensors given by (2.34)

¯̄τ = 2µ¯̄ε+ λTr(¯̄ε) (2.34)

where the linear stress tensor ¯̄ε is given in (2.35) and Tr( ¯̄ε) is the trace of the linear

stress tensor. The two constants λ and µ are called the Lamé constants. The constant

µ is the measure of a body’s resistance to shear strain and is called the shear modulus.

The constant λ does not have a simple physical interpretation. The longitudinal or

sound speed cl in a rigid body is given in terms of the Lamé constants by (2.36). The

linear elasticity equations also support transverse waves, which introduce a transverse

wave speed ct given in terms of the Lamé constants by (2.37).

¯̄ε =
1

2
(∇~u+ (∇~u)T ) (2.35)

c2l =
(λ+ 2µ)

ρ
(2.36)

c2t =
µ

ρ
(2.37)

Combining equations (2.33),(2.34),(2.36), and (2.37) forms the second-order linear

elastic wave equation for displacement (2.38). The operator on the right hand side

corresponds to the vector Laplacian operator.

∂2~u

∂t2
= c2l∇(∇ · ~u)− c2t∇×∇× ~u (2.38)

The boundary conditions for an elastic wave equation specify the traction (2.39)

and the displacement (2.40).

~t = ¯̄ε · n̂ on Γ (2.39)

~u = ~D on Γ (2.40)
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The Poynting theorem for linear elastic waves involves the combined stress and

strain tensors τ . In the linear acoustic equations this tensor reduces to ∇P1 for

inviscid flows. The energy can be derived from the the displacement equation (2.33)

by dotting this equation with the velocity ~v = ∂~u
∂t

, resulting in the differential form of

the energy equation (2.41) with no external forces applied.

ρ
∂2~u

∂t2
· ∂~u
∂t

= ∇ · (¯̄τ · ∂~u
∂t

) (2.41)

Using the identity (B.4) the energy equation for linear elasticity (2.42) can be con-

structed.

∇ · (~S) ≡ ∇ · −(¯̄τ · ~v) =
1

2

∂

∂t
{ρ∂~u
∂t
· ∂~u
∂t

+ ¯̄τ · ¯̄ε} (2.42)

Just as in the acoustic and electrodynamics equations there is an energy flux term

on the right hand side. The first and second terms on the left-hand side contain the

kinetic and potential energy density terms respectively. In integral form the energy

equation becomes (2.43).

∮

Γ
−(¯̄τ · ~v) · n̂dΓ =

1

2

∂

∂t

∫

Ω
{ρ∂~u
∂t
· ∂~u
∂t

+ ¯̄τ · ¯̄ε}dΩ (2.43)

2.5 Linear Magnetohydrodynamics Vector Wave

Equation

The linear magnetohydrodynamics (MHD) equations mark a departure from the

standard differential forms description of the wave equations above. The purpose be-

hind examining the MHD equations is to show the extensible nature of a differential
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forms framework. These equations are derived from the nonlinear magnetohydrody-

namics equations by solving for a small perturbations around a steady state just as

in the acoustic wave equations. The magnetic flux density equation as well as Ohm’s

law for a charged fluid in motion are given in (2.44) and (2.45) respectively.

∂ ~B

∂t
= ∇× (~v × ~B) +

1

µσ
∇2 ~B (2.44)

~J = σ( ~E + ~v × ~B) (2.45)

The linear magnetohydrodynamics equation is derived under the idealized con-

ditions of a compressible, inviscid, perfectly conducting fluid with no external fields

applied other than a constant magnetic flux density. The perfectly conducting nature

of the fluid removes the second term in (2.44) and reduces (2.45) to ~E = −~v × ~B.

The first-order nonlinear magnetohydrodynamics equations under these conditions

are given in (2.46).

∂ρ

∂t
= −(∇ · ρ~v)

ρ
∂~v

∂t
= −ρ(~v · ∇~v)−∇P1 −

~B

µ
×∇× ~B

∂ ~B

∂t
= ∇× (~v × ~B) (2.46)

Using (2.5),(2.6),(2.7), and the introduction of the linearized magnetic flux density

(2.47) these equations are linearized. The time independent magnetic flux density ~B0

is a spatially uniform field.

~B = ~B0 + ~B1(~r, t) (2.47)
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Substituting the pressure for density as in the acoustic case leads to the first-order

magnetohydrodynamics equations (2.48).

∂P1

∂t
= −(γP0)(∇ · ~v1)

ρ0
∂~v1

∂t
= −∇P1 −

~B0

µ0

×∇× ~B1

∂ ~B1

∂t
= ∇× (~v1 × ~B0)

∇ · ~B = 0 (2.48)

The choice of boundary conditions is problem dependent, for the simulations in this

dissertation the domain will be a closed region so that ~v · n̂ = 0 on Γ. The domain

is embedded in a uniform magnetic flux density ~B0, at the boundaries of this region

the magnetic flux density perturbation must be equal to this uniform magnetic flux

density ~B1 = ~B0 on Γ.

The second-order magnetohydrodynamics equation for velocity is given in (2.49),

ρ0
∂2~v1

∂t2
= −c2l∇∇ · ~v1 − ~va ×∇×∇× (~va × ~v1) (2.49)

where ~va =

√

~B0

ρ0
is the Alfvén velocity.

The magnetic flux density added to the acoustic equations adds to the energy as

well. The energy added is the magnetic flux density component shown as the fifth

term of (2.30). The magnetohydrodynamics Poynting equation is given in (2.50).

∇ · ~S = −ρ0~v1 ·
∂~v1

∂t
− (γP0)

−1P1
∂P1

∂t
− µ−1 ~B · ∂

~B

∂t

∇ · ~S = −1

2

∂

∂t

[

ρo|~v2
1|+ (γP0)

−1P 2
1 + µ−1B2

]

∮

Γ

~S · n̂dΓ +
1

2

∂

∂t

∫

Ω

[

ρo|~v2
1|+ (γP0)

−1P 2
1 + µ−1B2

]

= 0 (2.50)
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2.6 Differential Forms

Differential Forms are a subset of a larger subject in mathematics called Geometric

Calculus [34] . The main concept of Geometric Calculus is its emphasis on the

geometric interpretation of vectors, differential operators and all of the other ideas

that combine to form a calculus. Both Differential Forms and Geometric Calculus are

reinterpretations of vector calculus for metric free and higher order geometries. These

concepts are useful in areas such as spacetime physics but can also be leveraged for use

in described linear wave equations. The metric free nature of differential forms allows

the construction of differential operators, Grad, Div and Curl that are independent

of the coordinate system. The importance of this property will become apparent in

the Chapter 3.

The differential forms calculus is based on the concept of four entities called p-

forms in three-dimensional space. The 0-form and 3-form are both scalar quantities in

curvilinear geometry while the 1-form and 2-form are vector quantities in curvilinear

geometry. The differential form takes a p-dimensional vector and gives a number.

A more restrictive definition of a p-form is an expression that occurs under p-fold

integrals over domains.

To define a complete framework based on differential forms, various operations are

required. These metric free operations include the exterior derivative, d, correspond-

ing to the gradient, curl and divergence in vector calculus and the exterior product

or wedge operator ∧ corresponding to the dot and cross products in vector calculus.

Because coordinate transformations are required the pullback operator, push-forward

operator and the hodge star operator ?α will be discussed. More operations are de-
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fined in the differential forms calculus, but this subset is enough to perform all the

necessary operations in this dissertation. More information on Differential Forms can

be found in the text by Burke [1].

The properties of the 0-form, 1-form, 2-form, 3-form, exterior derivative, exte-

rior product, hodge star operator, and the push-forward and pullback operators are

described in the following sections.

2.6.1 Manifolds

To discuss differential forms, manifolds and their properties must first be dis-

cussed. Manifolds are descriptions of space which may be curved and have compli-

cated topology. Euclidean space, Rn, the set of n-tuples (x1, x2, ..., xn) is a common

manifold. Locally manifolds look like Euclidean space and a general manifold is built

by creating a set of locally Euclidean regions. On this manifold structures can be cre-

ated such as vector and tangent spaces. Vector spaces are the set of vectors defined

over a manifold and a tangent space is the set of all vectors at a single point three

dimensional space. In R3 a basis for the vector space of curvilinear coordinates can

be defined by the vector {x1, x2, x3}. At every point y ∈ R3 a tangent vector, the

standard basis for this space is (2.51).

{ ∂

∂x1
,
∂

∂x2
,
∂

∂x3
} (2.51)

A vector field in R3 is a mapping from R3 to the tangent space (2.52).

T (y) = β1(y)
∂

∂x1
+ β2(y)

∂

∂x2
+ β3(y)

∂

∂x3
(2.52)
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The values βi(y) are the components of the vector usually denoted by the column

vector {β1(y), β2(y), β3(y)}T . At every point y ∈ R3 a space of cotangent vectors can

be defined with basis (2.53).

{dx1, dx2, dx3} (2.53)

The components of the basis vector (2.53) are called differentials and are dual to the

basis (2.51) shown by the expression dxi ∂
∂xi = δij. The vector space ∆V (2.54), called

the cotangent space, is formed using this basis.

∆V = Span{dx1, dx2, dx3} (2.54)

2.6.2 0-forms

The mathematical representation of a 0-form ω0 is given in (2.55).

ω0 = β(y) (2.55)

The 0-form takes a zero-dimensional vector, a point, and returns a scalar which

corresponds to the evaluation of the scalar function at that point. These entities are

useful for describing physical quantities that are continuous across a material interface

such as potentials. A 0-form quantity such as the electric potential Φ(~x) would be

represented as an integral at a point (2.56)

Φ(~x0) =
∫

point
Φ(~x) (2.56)

where the construct
∫

point Φ(~x) =
∫

δ(~x− ~x0)Φ(~x)dΩ is the evaluation of the function

Φ(~x) at the point ~x0.

The basis for a 0-form is simply the basis for curvilinear coordinates in R3 given
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by {x1, x2, x3}. The component β of the 0-form is the evaluation of the scalar function

at a specific point in space. This is graphically represented in Figure 2.1.

���
�

y

z

x

Figure 2.1: Graphical description of a 0-form where the quantity shown is the evalu-
ation of the scalar function at (0,3,2).

2.6.3 1-forms

The 1-form is a tensor of rank
(

0
1

)

. Tensors of rank one have three elements in

three dimensional space. The mathematical representation of a 1-form ω1 is given in

(2.57).

ω1 = β1(y)dx
1 + β2(y)dx

2 + β3(y)dx
3 (2.57)

The 1-form is a mapping from R3 to the cotangent space denoted by ∆V . The basis

for the 1-forms is therefore just the cotangent basis (2.53). Each of the components

βi of the 1-form are 0-forms.

1-forms correspond to quantities with tangential continuity across a material in-

terface such as the electric field.

As defined above a differential form takes a p−dimensional vector and returns a

scalar. The scalar that is returned is the result of the integral of the p-form over

p-dimensional subdomains. In the case of a 1-form this integral is a line integral. A
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graphical representation of the 1-form dx2 is shown in Figure 2.2. Only a subset of

the entire 1-form dx2 is shown in the figure.

x

y

z

Figure 2.2: Graphical description of a 1-form dx2.

The line integral of this form from the point (1, 0, 0) to (1, 3, 0) is shown in Figure

2.3. The result of the integral is 4 and is often referred to as placing a pin into an

onion, where the pin refers to the line of integration and the layers of the onion are

the 1-form.

x

y

z

Figure 2.3: Graphical description of a 1-form dx2 integrated from (1,0,0) to (1,3,0).
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2.6.4 Exterior product

For arbitrary forms f, g and h and scalar values a and b, the exterior product, or

wedge product f ∧ g is an antisymmetric bilinear operator with the properties listed

in (2.58).

(af + g) ∧ h = a(f ∧ h) + g ∧ h

f ∧ (bh+ g) = b(f ∧ h) + f ∧ g

f ∧ f = 0 (2.58)

In order to define the 2-form and 3-form a wedge product, ∧, must be defined.

In the case of the 2-form, the wedge product takes the 1-form basis and returns a

2-form basis. The result can be thought of as a oriented area and is also referred to

as a bivector. The basis for the higher dimensional 2-form cotangent space is given

by (2.59).

{dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2} (2.59)

An example of the exterior product of a two 1-forms is shown in (2.60)

(A dx1 +B dx2 + C dx3) ∧ (P dx1 +Q dx2 +R dx3) =

(BR− CQ) dx2 ∧ dx3 + (CP − AR) dx3 ∧ dx1 + (AQ−BP ) dx1 ∧ dx2 (2.60)

The 3-form cotangent space is formed from the wedge of the 1-form and 2-form

cotangent spaces resulting in the 3-form basis (2.61).

{dx1 ∧ dx2 ∧ dx3} (2.61)

An example of the exterior product of a 1-form and a 2-form is shown in (2.62)

(A dx1 +B dx2 + C dx3) ∧ (P dx2 ∧ dx3 +Q dx3 ∧ dx1 +R dx1 ∧ dx2) =
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(AP +BQ+ CR) dx1 ∧ dx2 ∧ dx3 (2.62)

The exterior product corresponds to scalar multiplication, vector dot and cross prod-

ucts in vector calculus. The operator is defined in (2.63) where Λ represents the space

of an arbitrary form with rank p, q or p + q. Table 2.1 lists the exterior product of

various combinations of forms and their vector calculus equivalents for scalars α,β

and vectors ~A, ~B.

∧ : Λp × Λq → Λp+q (2.63)

Table 2.1: Exterior Operations

p-form q-form (p+ q)-form Vector Calculus Operation

0 0 0 αβ

0 1 1 α ~A

0 2 2 α~B
0 3 3 αβ

1 1 2 ~A× ~B

1 2 3 ~A · ~B
2 2 1 ~A× ~B (using Hodge star)

The last entry in the table is implemented using the Hodge star operator ? de-

scribed in the next section and is shown in (2.64). In this identity ω, γ and χ are

2-forms and δ is a 1-form.

?(?ω ∧ ?γ) = ?δ = χ (2.64)

2.6.5 2-forms

The mathematical representation of a 2-form ω2 is given in (2.65).

ω2 = β1(y)dx
2 ∧ dx3 + β2(y)dx

3 ∧ dx1 + β3(y)dx
1 ∧ dx2 (2.65)
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The 2-forms have normal continuity and represent fluxes such as the magnetic

flux density.

Graphically 2-forms can be though of as “tubes” such as the intersection of the

1-forms dx1 and dx2 shown in Figure 2.4. Only a small subset of the entire 2-form

is shown in the figure. The integration of the the 2-form is over a 2-dimensional
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Figure 2.4: Graphical description of a 2-form dx1 ∧ dx2.

subdomain in this case a plane with normal in the z-direction. This plane is denoted

by the dotted line in Figure 2.5. The result of the integration is 4 for the four “tubes”

intersected by the plane.
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Figure 2.5: Graphical description of a 2-form dx1 ∧ dx2 integrated over a plane indi-
cated by the dotted line segments.
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2.6.6 3-forms

The mathematical representation of a 3-form ω3 is given in (2.66).

ω3 = β(y)dx1 ∧ dx2 ∧ dx3 (2.66)

Geometrically the value dx1∧dx2∧dx3 is a volume of space. The 3-forms are defined

within a specific volume and therefore have no imposed continuity between adjacent

volumes which allows them to represent discontinuous fields such as density.

The graphical description of a 3-form is shown in Figure 2.6 where it is comprised

of “boxes”. The integration of a 3-form is over volumes in three-dimensional space.

The result of an integration performed on the 3-form over a volume is the number of

boxes contained within the volume. In the case of the 3-form in Figure 2.6 the result

is 8.
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Figure 2.6: Graphical description of a 3-form dx1∧dx2∧dx3 integrated over the cubic
region with side length 2.

In summary the p-form properties listed in Table 1.1 can be augmented by the

properties listed in the proceeding sections Table 2.2.
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Table 2.2: Properties of the p-forms

Property 0-form 1-form 2-form 3-form

Minimum Continuity Total Tangential Normal None
Integral Point Line Surface Volume

Derivative Grad Div Curl None
Physical Fluxes, Scalar

Type
Potentials Fields

Vector Densities Densities
Hilbert Space H(grad) H(div) H(curl) L2

2.6.7 Hodge star operator

The Hodge star operator is an invertible linear function that maps p-forms to (3-

p)-forms and is defined in (2.67). This operator contains metric and possible material

information for a space in n dimensions.

? : Λp → Λn−p (2.67)

This operator allows the mapping of p-forms to n− p-forms. The repeated Hodge

star operation results in the original form. Examples of the Hodge star operator in a

three dimensional Cartesian space are given in (2.68).

?1 = dx1 ∧ dx2 ∧ dx3

?dx1 = dx2 ∧ dx3

?(dx2 ∧ dx3) = dx1

?(dx1 ∧ dx2 ∧ dx3) = 1 (2.68)

An example of the Hodge star operator can been seen in the definition of the

electric flux density ~D. This quantity is defined by ~D = ε ~E in vector calculus. In Dif-

ferential Forms the electric field is a 1-form quantity possessing tangential continuity

across material interfaces. The electric flux density is a 2-form quantity possessing
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normal continuity across material interfaces. The Hodge star operator converts the

1-form electric field to a 2-form electric flux density D = ?εE. Here the Hodge star

operator ?ε contains material information via the electric permittivity with units of

[farad/m]. When a Hodge star operator contains material information, the material

will be shown as a subscript to the operator.

2.6.8 Pushforward and Pullback operators

The push-forward and pullback operators are equivalent to a generalized coordi-

nate transformation in a curvilinear coordinate system. Table 2.3 lists the transforma-

tion rules corresponding to the push-forward and pullback for the various p-forms . In

these transformations ∂Φ represents the Jacobi transformation matrix in curvilinear

coordinates.

Table 2.3: Transformation Rules

p-form Pushforward Pullback

0 (ω ◦ Φ) ∂Φ−1(dω ◦ Φ)
1 ∂Φ−1(ω ◦ Φ) 1

|∂Φ|∂ΦT (dω ◦ Φ)

2 1
|∂Φ|∂ΦT (ω ◦ Φ) 1

|∂Φ|(dω ◦ Φ)

Discussion of these transformations can be found in [35], the pictures of the trans-

formations found in this citation are reproduced here in Figure 2.7 and Figure 2.8.

The function f maps the manifold N with coordinates yα into the real numbers

f : N → R. The map Φ can be defined to map the manifold M with coordinates

xµ into N with coordinates yα, Φ : M → N . The pullback is then the operation

that maps f into R via M instead of N giving (f ◦ Φ) : M → R. The manifolds M

and N need not be the same dimension. In this dissertation the manifolds M and N
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correspond to the physical and reference spaces respectively. The mapping Φ maps

positions in the reference space into physical coordinates.

�
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Figure 2.7: Pullback Operation.

An operator cannot be defined using Φ to create a function in N given a function

g : M → R in M . So a push-forward operator cannot be defined in this way. A

vector can be thought of as a derivative operator that maps smooth functions into

real numbers [35] . This property allows the definition of a push-forward operator of a

vector. If V (p) is a vector at point p in M , then the push-forward operator Φ∗(V (p))

at a point Φ(p) on N can be defined by giving its action on functions in N (2.69).

Φ∗V (f) = V (Φ∗f) (2.69)

Using the chain rule and the basis for vectors in M given by ∂
∂xµ and the basis for

vector inN given by ∂
∂yα the relation between the components of the vector V = V µ ∂

∂xµ

in M can be related to the components in N shown in (2.70). This is the generalized

version of the vector transformation in vector calculus. The values of α and µ have

different allowed values so the matrix ∂yα

∂xµ is not necessarily invertible if M and N are
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different manifolds.

(Φ∗V )α ∂f

∂yα
= V µ∂y

α

∂xµ

∂f

∂yα
(2.70)

The push-forward operator is used to transform the forms resulting from an exterior

derivative operation. In vector calculus the push-forward operation is the transfor-

mation of the vector resulting from a function acting on an initial vector from one

coordinate system to another.
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Figure 2.8: Push-Forward Operation.

2.6.9 Exterior derivative

Given a 0-form f 0, the differential of f 0 is a 1-form given by

dω0 =
∂ω0

∂x1
dx1 +

∂ω0

∂x2
dx2 +

∂ω0

∂x3
dx3.

This operation, referred to as the exterior derivative d defines a linear operator that

maps a p-form into a p+ 1-form for p = 0, 1, 2

d : Λp → Λp+1;ω 7→ dω (2.71)

, such that

d(f l ∧ gm) = df l ∧ gm + (−1)lmf l ∧ dgm (2.72)

d(df l) = 0 (2.73)
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The exterior derivative forms an exact sequence between the different forms.

ω0 d−−−→ ω1 d−−−→ ω2 d−−−→ ω3

An explicit formula for the exterior derivative of a 1-form can be computed by

re-writing a 1-form ω1 as (2.74).

ω1 = A ∧ dx1 +B ∧ dx2 + C ∧ dx3 (2.74)

Where the components A, B, and C are 0-forms and applying the above chain rule

formula to yield (2.75).

d(A ∧ dx1 +B ∧ dx2 + C ∧ dx3) = (
∂C

∂x2
− ∂B

∂x3
)(dx2 ∧ dx3) +

(
∂A

∂x3
− ∂C

∂x1
)(dx3 ∧ dx1) +

(
∂B

∂x1
− ∂A

∂x2
)(dx1 ∧ dx2). (2.75)

Likewise, for the exterior derivative of a 2-form ω2 we have (2.76).

d
(

A ∧ (dx2 ∧ dx3) +B ∧ (dx3 ∧ dx1) + C ∧ (dx1 ∧ dx2)
)

=

(
∂A

∂x1
+
∂B

∂x2
+
∂C

∂x3
)(dx1 ∧ dx2 ∧ dx3). (2.76)

Because the exterior derivative forms an exact sequence, inclusion relations relat-

ing the space of the exterior derivative of a form to its resulting form’s space can be

defined (2.77).

dωp ⊆ ωp+1 , p = 0, 1, 2 (2.77)

In vector calculus, the exterior derivatives correspond to the gradient, curl and diver-

gence of the 0-form, 1-form, and 2-form respectively.
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ω0 ∇−−−→ ω1 ∇×−−−→ ω2 ∇·−−−→ ω3

The successive operation of the exterior derivative ddω = 0 results in the common

vector calculus identities (2.78). These operators are metric free and therefore are

exact for any manifold. Examples of the successive exterior derivative in vector

calculus are shown in (2.78).

∇×∇φ = 0

∇ · ∇ × ~E = 0 (2.78)

A set of adjoint differential operators can also be defined for the four forms.

ω0 ?d?←−−− ω1 ?d?←−−− ω2 ?d?←−−− ω3

Due to the two Hodge star operations these operators are not metric free and in

fact include transformations using two metrics corresponding to the two Hodge star

operations. The same operations as in (2.78) apply to these adjoint operators.

These adjoint operators map the opposite of the natural operators and are formed

using an integration by parts in vector calculus.

0ω
∇̃←−−− 1ω

∇̃×←−−− 2ω
∇̃·←−−− 3ω
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Table 2.4: Natural and Adjoint Differential Operators

Differential Operators

Domain

H(grad,Ω) H(curl,Ω) H(div,Ω) L2(Ω)

H(grad,Ω) ∇̃·
H(curl,Ω) ∇ ∇̃×
H(div,Ω) ∇× ∇̃

Range

L2(Ω) ∇·

Using the differential operator Stokes law, Gauss’s law and the potential law can

all be written in a very compact form resulting in the differential forms version of a

generalized Stoke’s law (2.79).
∫

Ω
dωp =

∫

Γ
ωp (2.79)

In this equation ωp represents a p-form, p = 0, 1, 2, Ω represents a p+ 1 dimensional

manifold, and Γ represents its boundary.

This compact expression unifies several key integration theorems of vector calcu-

lus, shown in Table 2.5.

Table 2.5: Generalized Stoke’s Law

p = 0 Fundamental Theorem of Calculus
∫ b
a du = u(b)− u(a)

p = 1 Stokes Theorem
∫ ∇× u · n̂ dA =

∮

u · t̂ dl
p = 2 Divergence Theorem

∫ ∇ · u dV =
∮

u · n̂ dA

2.6.10 Initial Boundary Value Problem

To define the discrete forms analogs of the previous wave equations, begin with the

generic boundary value problem stated in the language of differential forms from [15].

A 3-dimensional domain Ω with piecewise smooth boundary ∂Ω partitioned into



39

Dirichlet ΓD, Neumann ΓN , and Mixed ΓM boundary regions is assumed. The prob-

lem statement is:

du = (−1)pσ, dj = −Ψ + Φ in Ω (2.80)

TDu = 0 on ΓD, TNj = 0 on ΓN (2.81)

j = ?α σ, Ψ = ?γ u in Ω (2.82)

TMj = (−1)p ?β TMu on ΓM . (2.83)

Here u is a (p − 1)-form, σ is a p-form, j is a (3 − p)-form, and both Ψ and Φ are

(3−p+1)-forms, where 1 ≤ p ≤ 3. The variable Φ is a source term. In the boundary

conditions (2.81) and (2.83) the symbol T denotes the trace operator, where the trace

of a p-form is an integral over a p-dimensional manifold. Equations (2.80) and (2.82)

can be combined to yield the general second-order elliptic equation (2.84).

(−1)pd ?α du = − ?γ u+ Φ. (2.84)

The adjoint operators, along with the natural operators shown above, will also be

used in this paper. The equations associated with the adjoint operators are:

dσ = j, dΨ = −u+ Θ in Ω (2.85)

TDu = 0 on ΓD, TNΨ = 0 on ΓN (2.86)

σ = ?α u, Ψ = ?γ j in Ω (2.87)

TMΨ = TM ?β u on ΓM . (2.88)

Equations (2.85) and (2.87) can be combined to yield the general second-order adjoint

elliptic equation (2.89).

d ?γ d ?α u = −u+ Φ. (2.89)
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The second-order natural (2.84) and adjoint (2.89) can be combined to form the

Laplacian operator (2.90).

∆ = d ?γ d ?α + (−1)p ?γ d ?α d (2.90)

This operator represents both the scalar and vector Laplacian. The focus of this

dissertation is time-dependent phenomena. The time derivative does not affect the

degree of a form. The diagram below shows the time-dependent Maxwell’s equations,

where d denotes the spatial derivative, dt denotes the time derivative and converging

arrows denote summation.

0-forms : φ




yd

1-forms : A
−dt−−−→ E H





yd





yd





yd

2-forms : B
−dt−−−→ 0 D

−dt−−−→ J




yd





yd





yd

3-forms : 0 ρ
−dt−−−→ 0

2.7 Acoustic Scalar Wave Equation

Now that the more common description of the linear scalar acoustic wave equations

have been presented in vector calculus the differential forms version will be described.

To describe these PDEs in differential forms first forms and appropriate Hodge star

operations must be chosen for each variable. The table listing the various properties

of the p-forms Table 2.2 makes the choice of a form for each variable quite easy. For

the differential forms versions of these equations the equations listed in (2.11) and

(2.14) will be discussed.



41

To illustrate the choice of differential forms (2.10), (2.11) and (2.12) will be written

in integral form shown in (2.91),(2.92), and (2.93) respectively.

∫

Ω3

ρ1 =
∫

Ω3

ρ0

γP0

P1 (2.91)

∫

Ω0

P1 = −
∫

Ω0

ρ0∇ · γP0~v1 (2.92)

∫

Ω1

~v1 = −
∫

Ω1

∇P1 (2.93)

The natural version of the first-order scalar wave equation with the pressure rep-

resented as a 0-form and the velocity represented as a 1-form is listed in (2.94).

dtP = − ?ρ0 d ?γP0 v (2.94)

dtv = −dP (2.95)

The operator dt is the differential operator with respect to time instead of space.

Combining these two equations by taking the derivative of the first and substituting

the second gives the natural second-order form (2.96)

dtdtP = ?ρ0d ?γP0 dP (2.96)

The adjoint first order linear acoustic wave equation (2.11) in differential forms

with the pressure represented as a 3-form and the velocity represented as a 2-form is

listed in (2.97).

dtP = −dv (2.97)

dtv = ?(γP0)−1d ?ρ−1
0
P (2.98)

Combining these two equations gives the adjoint second order form (2.99)

dtdtP = d ?(γP0)−1 d ?ρ−1
0
P (2.99)
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2.8 Electrodynamic Vector Wave Equation

In these equations the values of ?α and ?β correspond to the material properties

µ−1 and ε respectively.

In the differential forms calculus these first order equations become (2.100).

dtB = −dE −Ms − ?σM
?µ−1 B

dtD = dH − Js − ?σE
E

dD = 0

dB = 0 (2.100)

The second order vector wave equation for the electric field in an inhomogeneous

charge free domain presented (2.28) has the differential forms description shown in

(2.101). This equation represents the natural second order IBVP given in (2.84).

dtdtD + (?σE
+ ?µ−1 ?σM

?ε)dtE + ?µ−1 ?σM
?σE

E

= −d ?µ−1 dE − ?µ−1 ?σM
Js − d ?µ−1 Ms − dtJs

dD = 0 (2.101)

The second order vector wave equation presented for the magnetic flux density in

an inhomogeneous charge free domain in (2.29) has the differential forms representa-

tion shown in (2.102). This equation represents the adjoint version of the IBVP given

in (2.89).

dtdtB + (?σM
?µ−1 − ?σE

?ε−1)dtB + ?ε−1 ?σE
?σM

?µ−1 B =

−d ?ε−1 d ?µ−1 B − ?ε−1 ?σE
Ms − d ?ε−1 Js − dtMs

dB = 0 (2.102)
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2.9 Linear Acoustic Vector Wave Equation

The natural and adjoint differential forms descriptions of these equations are the

opposite of the second order equations for the scalar case listed in (2.96) and (2.99).

The second order linear vector acoustic wave equations for the 2-form natural (2.103)

and 1-form adjoint forms (2.105) are constructed from the adjoint first order (2.97)

and natural first order (2.94) equations respectively. The boundary conditions pre-

sented in (2.32) correspond to representing the velocity as a 2-form corresponding to

(2.84).

dtdtv = ?(γP0)−1d ?ρ−1
0
dv (2.103)

If the linear acoustic vector wave equation is written in terms of 1-forms corresponding

to (2.84), the boundary conditions imposed change to (2.104) resulting in (2.105).

~v × n̂ = ~D on Γd

~v · n̂ = ~N on Γn (2.104)

dtdtv = d ?ρ0 d ?γP0 v (2.105)

2.10 Linear Elastic Vector Wave Equation

In differential forms the displacement vector u can be describe either by a 1-form

or 2-form quantity. In either case the vector Laplacian is a combination of the natural

second order and adjoint second order operators. The differential forms versions of

(2.38),(2.90), are shown in (2.106) and (2.107) for the 1-form and 2-form versions

respectively.
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dtdtu = d ?ρ−1
0
d ?(λ+2µ) u− ?ρ−1

0
d ?µ du (2.106)

dtdtu = ?ρ−1
0
d ?(λ+2µ) du− d ?ρ−1

0
d ?µ u (2.107)

2.11 Linear Magnetohydrodynamics Vector Wave

Equation

The differential forms version of the first-order linear magnetohydrodynamics

equations in (2.48) are listed in (2.108). The velocity v, magnetic flux density per-

turbation B and initial magnetic flux density B0 are all described by 2-forms. The

pressure P is described by a 3-form variable.

dtP = −dv

dtv = − ?(γP0)−1 d ?ρ−1
0
P − ?ρ−1

0
B0 ∧ ?ρ−1

0
d ?µ−1

0
B

dtB = d(?v ∧ ?B0) (2.108)

Combining the first order differential forms version of the equations into a single

second order equation results in the equation listed in (2.109).

dtdtv = ?(γP0)−1d ?ρ−1
0
dv − ?ρ−1

0
B0 ∧ ?ρ−1

0
d ?µ−1

0
d(?v ∧ ?B0) (2.109)
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Chapter 3

Discrete Differential Forms

To define a discrete differential forms framework the discrete differential forms

should be a good approximation of the continuous differential forms. Hiptmair [15]

outlines the requirements for discrete differential forms. These requirements include:

discrete subspaces of the continuous form’s space, degrees of freedom that are related

to the traces of the forms, conformity to the exact sequence property, and conformity

to the commuting diagram. Each of these topics will be discussed in the sections

below. The link between differential forms and the finite element basis functions

developed by Nédélec [10], [11] leading to the requirements above has been studied

by many authors including Bossavit, Mattiussi, Tonti, Dezin, Shashkov, and Chew.

The discretization of these differential forms can be accomplished through finite dif-

ference, finite volume or finite element techniques as discussed in the introduction.

The Galerkin finite element method described in this chapter overcomes two of the

major limitations of finite difference and finite volume techniques. These two lim-

itations include the necessity for structured but not necessarily orthogonal grids in
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finite difference and the requirement of a dual grid in both finite difference and finite

volume.

3.1 Galerkin Finite Element Method

The Galerkin finite element method [36] is a specific example of the larger class

of variational methods. The details of this Galerkin finite element method are best

expressed through an example. Given a PDE such as Poisson’s equation (3.1) an

ansatz for the solution can be constructed (3.2).

∇ ·D∇u = −f on Ω u = 0 on Γ (3.1)

uG =
n

∑

i

uiφi(~x) (3.2)

The ansatz is constructed by choosing u to be in a space of functions V . The space V

is called a Sobelev space W k
q (Ω). The Sobelev space W k

q (Ω) is a complete, normed,

inner product space of order k which includes the derivatives of its members up to

order q [37]. In this dissertation only Sobolev spaces with q = 2 are used, these spaces

are referred to as Hilbert spaces. The Hilbert spaces for the continuous p-forms were

listed in the first chapter and will be discussed in more depth in the following section.

The basis functions φi(~x) can span the entire domain Ω or can have compact

support, meaning they are only defined on small subdomain. This latter case leads

to the finite element method and will be used for the rest of the example.

The finite element method requires the solution domain to be decomposed into

a conforming tessellation of the domain into Nvols polyhedral. Over each of the

subdomains the basis functions φ(~xi) will be defined. Within each subdomain the
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solution ufe will be defined by the ne degrees of freedom ui corresponding to the ne

nonzero basis functions defined within the subdomain. The sum of the product of

all of the n degrees of freedom ui and the n basis functions φ(~x) forms the Galerkin

finite element solution.

The ansatz is entered into the PDE Poisson’s equation to form the residual (3.3).

The residual equation would be zero if uG is the exact solution.

R[uG] = −∇ ·D∇uG − f (3.3)

After the residual equation is constructed, moments of this equation over the entire

domain are taken with the basis functions and are required to vanish (3.4).

∫

Ω
φ(~xi)R[uG] = 0 ∀ φ(~x)i. (3.4)

The Galerkin variational form (3.5) results from entering the residual into (3.5).

−(∇ ·D∇u, v) = (f, v) ∀ v ∈ T = Span{φ(~x)i}. (3.5)

Here the notation (, ) is the integration over the entire domain (α, β) =
∫

Ω αβdΩ for

scalars and (~α, ~β) =
∫

Ω ~α · ~βdΩ for vectors. The generalization of the operators in

(3.5) are commonly referred to as a bilinear forms. The bilinear forms can be defined

for vectors and differential operators and will be discussed in more detail below.

In general the space u and the space v need not be the same. In this dissertation

the Solution Space V and the test space T are the same space. The test space T only

differs from V by the inclusion of the boundary condition.

This Galerkin variational form leads to a discrete system of equations for u given

by (3.6).

A~u = ~b (3.6)
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Where ~u are the vector of coefficients used in (3.2), ~b is vector created by (f, v) and

A is the matrix resulting from (∇ ·D∇u, v).

The benefits of using the Galerkin finite element method over a variational method

such as the Rayleigh-Ritz variational method include the ability to define the varia-

tional method for non-self-adjoint PDEs and reducing to the optimum Rayleigh-Ritz

variational form for self-adjoint PDEs.

3.2 Vector Spaces

The Galerkin variational method requires each variable be defined in Hilbert space.

This section defines the solution and test spaces for each of the p-forms .

The 3-forms in this dissertation are element centered quantities that have no

continuity. The proper space defining these functions is (3.7) with its associated

norm given in (3.8). The test and solution space for this form are the same. The

total number of basis functions in which to expand the discrete 3-form is the total

number of elements in the mesh Nvols.

L2(Ω) = {u;
∫

Ω
u2dΩ <∞} (3.7)

‖u‖L2 = (‖u‖2)1/2 (3.8)

The 0-forms are totally continuous scalar functions with the gradient as the dif-

ferential operator. The proper space to define these functions is H(grad) defined

in (3.9). The test space for the 0-forms has the homogeneous Dirichlet boundary

condition u = 0 on Γ as a constraint (3.10). The norm for the space is given in
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(3.11).

H(grad,Ω) = {u : u ∈ L2(Ω);∇u ∈ (L2(Ω))3} (3.9)

H0(grad, Ω̄) = {u : u ∈ L2(Ω);u = 0 on Γ} (3.10)

‖u‖H(grad,Ω) = (‖u‖2 + ‖∇u‖2)1/2 (3.11)

In electrodynamics the electric field has tangential continuity across a material

boundary. In this case it would be improper to force the electric field to have total

continuity across the material boundary by treating each component as a totally

continuous scalar function. The inclusion relation (2.77) shows that the space of the

curl of the 1-forms is included in the 2-forms space. Is necessary to include the curl

of the discrete 1-forms in the space used to represent them in order to maintain this

inclusion relation on the discrete level. This space is given byH(curl) (3.12). The test

space for the 1-forms include the homogeneous vector Dirichlet boundary condition

~u× n̂ = 0 on Γ (3.13). The norm for H(curl) is given in (3.14).

H(curl,Ω) = {~u : ~u ∈ (L2(Ω))3;∇× ~u ∈ (L2(Ω))3} (3.12)

H0(curl, Ω̄) = {~u : ~u ∈ (L2(Ω))3; n̂× ~u = 0 on Γ} (3.13)

‖~u‖H(curl,Ω) = (‖~u‖2 + ‖∇ × ~u‖2)1/2 (3.14)

In electrodynamics the magnetic flux density has normal continuity across a mate-

rial boundary. Just as in this case with the electric field it would be improper to force

the magnetic flux density to have total continuity across this boundary. The conti-

nuity of the 2-forms requires that these forms be defined in the space H(div) (3.15).

The test space for the 2-forms include the homogeneous vector Dirichlet boundary

condition ~u · n̂ = 0 on Γ (3.16). The norm for H(div) is given in (3.17).
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H(div,Ω) = {~u : ~u ∈ (L2(Ω))3;∇ · ~u ∈ L2(Ω)} (3.15)

H0(div, Ω̄) = {~u : ~u ∈ (L2(Ω))3; ~u · n̂ = 0 on Γ} (3.16)

‖~u‖H(div,Ω) = (‖~u‖2 + ‖∇ · ~u‖2)1/2 (3.17)

Requiring the discrete forms be defined in these spaces satisfies the first require-

ment of a discrete differential forms framework.

3.3 Finite Elements

The Galerkin finite element method is the restriction of the Galerkin variational

method to the expansion of variables in terms of functions with compact support.

These functions with compact support span a polynomial space with dimension D

referred to as P . The degrees of freedom A determine a basis {Ψ1,Ψ2, ...,ΨN} in

which the variable can be expanded. The basis functions are non-zero only within a

specified polyhedral domain K. The combination of (K,P ,A) forms a finite element.

The four p-forms require four polynomial spaces, four basis functions and four

associated degrees of freedom representations to form discrete differential forms. The

four basis functions correspond to a nodal basis functions for the 0-form and cell-

centered basis functions for the 3-form as described in the mixed finite element

method of Raviart-Thomas. Two new basis functions for three dimensions devel-

oped by Nédélecform the basis for the discrete 1-form and 2-form. The degrees of

freedom represent the discrete p-forms coefficients as demonstrated for the contin-

uous case in Chapter 2. The polynomial spaces P , basis functions and degrees of
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freedom for tetrahedral,prismatic and hexahedral domains are presented below. The

essential properties of the p-form basis functions and degrees of freedom are discussed

in [10], [38], [15].

In this dissertation the basis functions are defined on a reference element Ẽ =

(K̃, P̃ , Ã) and mapped to an arbitrary finite element Ei = (Ki,Pi,Ai) through an

isoparametric mapping Φ(K̃) = K. The reference element polyhedral domains K̃

correspond to the unit cube, tetrahedron or prism.

The Galerkin finite element method requires a conforming mesh T . The two

requirements for a conforming mesh include a non-overlapping collection of three-

dimensional polyhedra Ki that intersect only on the faces Γij of the polyhera and fill

the entire domain (3.19).

Ki ∩ Kj = Γij (3.18)

∪Ki = Ω (3.19)

Due to the compact support of the finite element basis functions two interpolants can

be defined. The local interpolant for an arbitrary variable f (3.20) is the sum of the

product of the N local degrees of freedom and local basis functions.

IKf =
N

∑

i=1

αi(f)Ψi (3.20)

Global basis functions are formed by the local basis functions that are non-zero

within an element and zero everywhere else. Using these global basis functions a

global interpolant for an arbitrary function f can be defined (3.21) which is a sum of

the local interpolants over the entire domain.

ITf |Ki
= IKi

f ∀ Ki ∈ T (3.21)
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The order q of continuity of the global interpolant is defined by ITf ∈ Cq ∀ f ∈

Cm m ≥ q.

The error involved with the global interpolation can be bound by the parameter

hi which is the maximum diameter of the polyhedral domain Ki. A sequence of

meshes is refined as h→ 0. If all the angles in the mesh are bound between a nonzero

minimum and a maximum less than π then as h→ 0 the meshes are said to be refined

uniformly. The approximation error for a polynomial space P complete to order k−1

and a global interpolant continuous to order q [36] [39] is given in (3.22).

|f − ITf |W s
p
≤ Csh

k−s|f |W k
p

; s ≤ q (3.22)

3.3.1 Degrees of freedom

The degrees of freedom A are a subset of the dual space of Pi , which is a set of

linear functionals from Pi onto < [40]. Several criteria must be enforced to have valid

degrees of freedom, they must be unisolvent, invariant and local. Unisolvence refers

to the criteria that the degrees of freedom, {αi}, be dual to Pi (3.23).

αi(ψj) = δij (3.23)

Invariance refers to the property in which under a transformation of variables the de-

grees of freedom remain unisolvent. This becomes important when the basis functions

are transformed from the reference element to the physical domain via the pullback

operator. The locality of the degrees of freedom refers to the criteria that the trace of

the basis function on a sub-simplex is determined by the degrees of freedom associated

only with the sub-simplex.
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The general definition of the degrees of freedom {αi} is given in (3.24)

{αi} = {ψ →
∫

s
ψ ∧ ηi,s} (3.24)

In this equation the value for s denotes the sub-simplex, i.e. node, edge, face or

volume, and {ηi,s} are a set of weighting polynomials. For the lowest order basis

functions presented in this dissertation the degrees of freedom for the p-forms are

presented in Table 3.1.

Table 3.1: Degrees of Freedom

Form Degree of Freedom

0
∫

node ψδ(node) dvolume

1
∫

edge
~ψ × n̂ dedge

2
∫

face
~ψ · n̂ dface

3
∫

volume ψ dvolume

In this table the 0-form degree of freedom is the value of the function at the node

given by the integration involving the delta function at the given node.

The degrees of freedom shown in Table 3.1 satisfy the requirement that they be

related to the traces of the forms. Each p-form is the p-fold integral over the domain.

3.3.2 Linear tetrahedral basis functions

The linear tetrahedral element illustrated in Figure 3.1 has the four polyno-

mial spaces Pi (3.25),(3.26),(3.27),(3.28) associated with the four discrete differential

forms. The dimensions of each of the spaces is {4, 6, 4, 1} respectively, corresponding

to the number of nodes, edges, faces and volumes contained in the element.

P0 = {u : u ∈ P1 ; u = a0 + a1ψ + a2ξ + a3η ; ai ∈ <} (3.25)
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Figure 3.1: Tetrahedron Basis Function Numbering

P1 = {~u : ~u = (u1, u2, u3) ~u ∈ (P1)
3 ;

∂ui

∂xj

δij = 0 ;
∂ui

∂xj

+
∂uj

∂xi

= 0 , i 6= j} (3.26)

P2 = {~u : ~u ∈
(

(P0)
3 + P0 · ~r

)

; ~u = {a0+a3ψ, a1+a3ξ, a2+a3η} ; ai ∈ <} (3.27)

P3 = {u : u ∈ P0 ; u = a0 ; a0 ∈ <} (3.28)

The four sets of tetrahedron basis functions are listed in Table 3.2 and are con-

structed by forcing the condition (3.23) for each of the degrees of freedom listed in

Table 3.1. These basis functions are defined on a tetrahedral reference element with

coordinates {ψ, ξ, η}.

Table 3.2: Tetrahedral Basis Functions

N Nodal W Edge F Face S Volume

1 (1− ψ − ξ − η) {(1− ξ − η), ψ, ψ} {−2ψ,−2ξ, 2(1− η)} constant
2 ψ {ξ, (1− ψ − η), ξ} {2ψ, 2(ξ − 1), 2η} -
3 ξ {η, η, (1− ψ − ξ)} {2(1− ψ),−2ξ,−2η} -
4 η {−ξ, ψ, 0} {2ψ, 2ξ, 2η} -
5 - {−η, 0, ψ} - -
6 - {0,−η, ξ} - -
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0-form basis

The four local 0-form basis functions referred to as the nodal basis functions are

shown in Figure 3.2. For a mesh with Nvols tetrahedrons containing Nnodes nodes

Figure 3.2: Tetrahedron Node Basis Functions

there is a linear nodal finite element (Ki,Pi,Ai) associated with each element. An

arbitrary function f can be expanded in Nnodes global basis functions consisting of

the local basis functions listed in the first column of Table 3.2 inside the element and

zero outside. The collection of all of these global basis functions is referred to as N h

with dimension Nnodes. The value of f is determined by the four values at the four

nodes. Because the nodes are shared between adjoining elements the value of f must
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be consistent giving a continuous function. The rate of convergence for this finite

element is (3.29).

|f − ITf |2 ≤ Ch2|f |H2 (3.29)

1-form basis

The six local 1-form basis functions referred to as the edge basis functions are

shown in Figure 3.3. For a mesh with Nvols tetrahedrons containing Nedges edges

there is a linear edge finite element (Ki,Pi,Ai) associated with each element. An

arbitrary function f can be expanded in Nedges global basis functions consisting of

the local basis functions listed in the second column of Table 3.2 inside the element

and zero outside. The collection of all of these global basis functions is referred to as

Wh with dimension Nedges. The value of f is determined by the six values at the six

edges. The edge basis functions maintain tangential continuity by construction. The

rate of convergence for this finite element is (3.30).

|f − ITf |H(curl) ≤ Ch1|f |H1 (3.30)

2-form basis

The four local 2-form basis functions referred to as the face basis functions are

shown in Figure 3.4. For a mesh with Nvols tetrahedrons containing Nfaces faces there

is a linear face finite element (Ki,Pi,Ai) associated with each element. An arbitrary

function f can be expanded in Nfaces global basis functions consisting of the local

basis functions listed in the third column of Table 3.2 inside the element and zero

outside. The collection of all of these global basis functions is referred to as F h with
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Figure 3.3: Tetrahedron Edge Basis Functions
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Figure 3.4: Tetrahedron Face Basis Functions
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dimension Nfaces. The value of f is determined by the four values at the four faces.

The face basis functions maintain normal continuity by construction. The rate of

convergence for this finite element is (3.31).

|f − ITf |H(div) ≤ Ch1|f |H1 (3.31)

3-form basis

The single constant local 3-form basis functions referred to as the volume basis

function is shown in Figure 3.5. For a mesh with Nvols tetrahedrons there is a linear

Figure 3.5: Tetrahedron Volume Basis Functions

face finite element (Ki,Pi,Ai) associated with each element. An arbitrary function f

can be expanded in Nvols global basis functions consisting of the local basis functions

listed in the fourth column of Table 3.2 inside the element and zero outside. The

collection of all of these global basis functions is referred to as Sh with dimension

Nvols. The value of f is determined by the four values at the four faces. The volume

basis functions have no continuity. The rate of convergence for this finite element is
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(3.32).

|f − ITf |2 ≤ Ch1|f |H1 (3.32)

3.3.3 Linear prismatic basis functions

The linear prismatic element illustrated in Figure 3.6
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Figure 3.6: Prism Basis Function Numbering

has the four polynomial spaces Pi (3.33),(3.34),(3.35),(3.36) associated with the

four discrete differential forms. The dimensions of each of the spaces is {5, 9, 5, 1} re-

spectively, corresponding to the number of nodes, edges, faces and volumes contained

in the element.

P0 = {u : u ∈ P1 ; u = a0 + a1ψ + a2ξ + a3η + a4ψη + a5ξη ; ai ∈ <} (3.33)

P1 = {~u : ~u = (u1, u2, u3) ;u1 ∈ (a0 + a1ξ)(a2 + a3η) , (3.34)

u2 ∈ (a4 + a5ψ)(a2 + a3η) , u3 ∈ (a6 + a7ψ + a8ξ)}

P2 = {~u : ~u = (u1, u2, u3) ;u1 ∈ (a0 + a2ψ) , u2 ∈ (a1 + a2ξ) , u3 ∈ (a3 + a4η)}

(3.35)
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P3 = {u : u ∈ P0 ; u = a0 ; a0 ∈ <} (3.36)

The four sets of Prism basis functions are listed in Table 3.3.

Table 3.3: Prismatic Basis Functions

N Nodal W Edge F Face S Volume

1 (1− ψ − ξ − η)(1− η) {−ξ(1− η), (1− η)(ψ − 1), 0} {(ψ − 1), ξ, 0} constant
2 ψ(1− η ) {ηξ, η(1− ψ), 0} {ψ, (ξ − 1), 0} -
3 η(1− η) {(1− ξ)(1− η), ψ(1− η), 0} {ψ, ξ, 0} -
4 (1− ψ − ξ)η {η(ξ − 1),−ψη, 0} {0, 0, (η − 1)} -
5 ψη {−ξ(1− η), ψ(1− η), 0} {0, 0, η} -
6 ξη {ξη,−ψη, 0} - -
7 - {0, 0,−ξ} - -
8 - {0, 0, (1− ψ − ξ)} - -
9 - {0, 0, ψ} - -

0-form basis

The six local 0-form basis functions referred to as the nodal basis functions are

shown in Figure 3.7. For a mesh with Nvols prisms containing Nnodes nodes there is

a linear nodal finite element (Ki,Pi,Ai) associated with each element. An arbitrary

function f can be expanded in Nnodes global basis functions consisting of the local

basis functions listed in the first column of Table 3.3 inside the element and zero

outside. The collection of all of these global basis functions is referred to as N h

with dimension Nnodes. The value of f is determined by the four values at the four

nodes. Because the nodes are shared between adjoining elements the value of f must

be consistent giving a continuous function. The rate of convergence for this finite

element is (3.37).

|f − ITf |2 ≤ Ch2|f |H2 (3.37)
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Figure 3.7: Prism Node Basis Functions
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1-form basis

The nine local 1-form basis functions referred to as the edge basis functions are

shown in Figure 3.8. For a mesh with Nvols prisms containing Nedges edges there is

Figure 3.8: Prism Edge Basis Functions

a linear edge finite element (Ki,Pi,Ai) associated with each element. An arbitrary

function f can be expanded in Nedges global basis functions consisting of the local

basis functions listed in the second column of Table 3.3 inside the element and zero
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outside. The collection of all of these global basis functions is referred to as Wh with

dimension Nedges. The value of f is determined by the six values at the six edges.

The edge basis functions maintain tangential continuity be construction. The rate of

convergence for this finite element is (3.38).

|f − ITf |H(curl) ≤ Ch1|f |H1 (3.38)

2-form basis

The five local 2-form basis functions referred to as the face basis functions are

shown in Figure 3.9. For a mesh with Nvols prisms containing Nfaces faces there is

a linear face finite element (Ki,Pi,Ai) associated with each element. An arbitrary

function f can be expanded in Nfaces global basis functions consisting of the local

basis functions listed in the third column of Table 3.3 inside the element and zero

outside. The collection of all of these global basis functions is referred to as F h with

dimension Nfaces. The value of f is determined by the four values at the four faces.

The face basis functions maintain normal continuity by construction. The rate of

convergence for this finite element is (3.39).

|f − ITf |H(div) ≤ Ch1|f |H1 (3.39)

3-form basis

The single constant local 3-form basis functions referred to as the volume basis

function is shown in Figure 3.10. For a mesh with Nvols prisms there is a linear face

finite element (Ki,Pi,Ai) associated with each element. An arbitrary function f can

be expanded in Nvols global basis functions consisting of the local basis functions
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Figure 3.9: Prism Face Basis Functions
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Figure 3.10: Prism Volume Basis Functions

listed in the fourth column of Table 3.3 inside the element and zero outside. The

collection of all of these global basis functions is referred to as Sh with dimension

Nvols. The value of f is determined by the four values at the four faces. The volume

basis functions have no continuity. The rate of convergence for this finite element is

(3.40).

|f − ITf |2 ≤ Ch1|f |H1 (3.40)

3.3.4 Linear hexahedral basis functions

Q1,1,1 = a0 + a1ψ + a2ξ + a3η + a4ψξ + a5ψη + a6ξη + a7ψξη (3.41)

P0 = {u : u ∈ Q1,1,1} (3.42)

P1 = {~u : ~u = (u1, u2, u3) ;u1 ∈ Q0,1,1 ; u2 ∈ Q1,0,1 ; u3 ∈ Q1,1,0} (3.43)

P2 = {~u : ~u = (u1, u2, u3) ;u1 ∈ Q1,0,0 ; u2 ∈ Q0,1,0 ; u3 ∈ Q0,0,1} (3.44)
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P3 = {u : u ∈ P0 ; u = a0 ; a0 ∈ <} (3.45)

The four sets of Hexahedral basis functions are listed in Table 3.4. The numbering

for nodes, edges and faces is given in Figure 3.11.
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Figure 3.11: Hexahedral Basis Function Numbering

Table 3.4: Hexahedral Basis Functions

N Nodal W Edge F Face S Volume

1 (1− ψ)(1− ξ)(1− η) {(1− ξ)(1− η), 0, 0} {0, 0, (1− η)} constant
2 ψ(1− ξ)(1− η) {ξ(1− η), 0, 0} {0, 0, η} -
3 ψξ(1− η) {(1− ξ)η, 0, 0} {0, (1− ξ), 0} -
4 (1− ψ)ξ(1− η) {ξη, 0, 0} {0, ξ, 0} -
5 (1− ψ)(1− ξ)η {0, (1− ψ)(1− η), 0} {(1− ψ), 0, 0} -
6 ψ(1− ξ)η {0, ψ(1− η), 0} {ψ, 0, 0} -
7 ψξη {0, (1− ψ)η, 0} - -
8 (1− ψ)ξη {0, ψη, 0} - -
9 - {0, 0(1− ψ)(1− ξ)} - -
10 - {0, 0, ψ(1− ξ)} - -
11 - {0, 0, (1− ψ)ξ} - -
12 - {0, 0, ψξ} - -

0-form basis

The eight local 0-form basis functions referred to as the nodal basis functions are

shown in Figure 3.12. For a mesh with Nvols hexahedrons containing Nnodes nodes
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Figure 3.12: Hexahedral Node Basis Functions
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there is a linear nodal finite element (Ki,Pi,Ai) associated with each element. An

arbitrary function f can be expanded in Nnodes global basis functions consisting of

the local basis functions listed in the first column of Table 3.4 inside the element and

zero outside. The collection of all of these global basis functions is referred to as N h

with dimension Nnodes. The value of f is determined by the four values at the four

nodes. Because the nodes are shared between adjoining elements the value of f must

be consistent giving a continuous function. The rate of convergence for this finite

element is (3.46).

|f − ITf |2 ≤ Ch2|f |H2 (3.46)

1-form basis

The twelve local 1-form basis functions referred to as the edge basis functions are

shown in Figure 3.13. For a mesh with Nvols hexahedrons containing Nedges edges

there is a linear edge finite element (Ki,Pi,Ai) associated with each element. An

arbitrary function f can be expanded in Nedges global basis functions consisting of

the local basis functions listed in the second column of Table 3.4 inside the element

and zero outside. The collection of all of these global basis functions is referred to as

Wh with dimension Nedges. The value of f is determined by the six values at the six

edges. The edge basis functions maintain tangential continuity by construction. The

rate of convergence for this finite element is (3.47).

|f − ITf |H(curl) ≤ Ch1|f |H1 (3.47)
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Figure 3.13: Hexahedral Edge Basis Functions
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2-form basis

The six local 2-form basis functions referred to as the face basis functions are

shown in Figure 3.14. For a mesh with Nvols hexahedrons containing Nfaces faces

there is a linear face finite element (Ki,Pi,Ai) associated with each element. An

arbitrary function f can be expanded in Nfaces global basis functions consisting of

the local basis functions listed in the third column of Table 3.4 inside the element

and zero outside. The collection of all of these global basis functions is referred to

as Fh with dimension Nfaces. The value of f is determined by the four values at the

four faces. The face basis functions maintain normal continuity by construction. The

rate of convergence for this finite element is (3.48).

|f − ITf |H(div) ≤ Ch1|f |H1 (3.48)

3-form basis

The single constant local 3-form basis functions referred to as the volume basis

function is shown in Figure 3.15. For a mesh with Nvols hexahedrons there is a linear

face finite element (Ki,Pi,Ai) associated with each element. An arbitrary function f

can be expanded in Nvols global basis functions consisting of the local basis functions

listed in the fourth column of Table 3.4 inside the element and zero outside. The

collection of all of these global basis functions is referred to as Sh with dimension

Nvols. The value of f is determined by the four values at the four faces. The volume

basis functions have no continuity. The rate of convergence for this finite element is

(3.49).

|f − ITf |2 ≤ Ch1|f |H1 (3.49)
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Figure 3.14: Hexahedral Face Basis Functions
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Figure 3.15: Hexahedral Volume Basis Functions

3.3.5 Bilinear forms

In the Galerkin finite element procedure bi-linear forms are required. These are

easily generated from the general second-order equation (2.84) by taking the wedge

product with an (l − 1)-form v and integrating over the volume Ω,

∫

Ω
(−1)ld ?α du ∧ v = −

∫

Ω
?γ u ∧ v +

∫

Ω
Φ ∧ v. (3.50)

Using the integration-by-parts formula

∫

Ω
dω ∧ η + (−1)l

∫

Ω
ω ∧ dη =

∫

∂Ω
ω ∧ η (3.51)

yields the two key symmetric bilinear forms

a(u, v) =
∫

Ω
?α (du) ∧ dv, (3.52)

b(u, v) =
∫

Ω
?γ u ∧ v. (3.53)

On the discrete level these bilinear forms are sums of integrals over each polyhedral

domain K. The continuous bilinear forms in (3.52) and (3.53) become (3.54) and

(3.58) when the discrete differential forms are entered. The final integral in each
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case is over the reference element polyhedra K̃ for the physical polyhedra K. The

isoparametric mapping K = Φ(K̃) was shown previously in Table 2.3, the discrete

versions are shown below.

a(u, v) =
∫

Ω
?α(du) ∧ dv (3.54)

=
∑

K∈T

∫

K=Φ(K̃)
?α(du) ∧ dv (3.55)

=
∑

K∈T

∫

K̃
Φ? (?α(du) ∧ dv) |Φ| (3.56)

=
∑

K∈T

∫

K̃
?α·Φ (Φ∗(du)) ∧ Φ∗(dv)|Φ|. (3.57)

b(u, v) =
∑

K∈T

∫

K̃
? (Φ∗(u)) ∧ Φ∗(v)|Φ|. (3.58)

These bilinear forms are utilized in the sections below to define the finite element

method for the various p-forms.

3.3.6 Discrete differential operators

In this section we will discuss the various scalar and vector differential operators

and their transformation from the reference to physical frames. The natural and

adjoint continuous differential operators were presented previously in Table 2.4. The

corresponding discrete versions are given in Table 3.5.

The matrices presented in Table 3.5 are constructed using the bilinear forms and

basis functions presented in the sections above. The mass matrices, Mγ
p , for each of

the p-forms with scalar, α and tensor,β materials γ are listed in (3.59).

(Mα
0 )i,j = (αNi, Nj) ; Ni, Nj ∈ N h

(Mβ
1 )i,j = (β ~Wi, ~Wj) ; ~Wi, ~Wj ∈ Wh
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Table 3.5: Discrete Differential Operators

Discrete Differential Operators

Domain

N h Wh Fh Sh

N h D̃

Wh G C̃

Fh C G̃

Range

Sh D

(Mβ
2 )i,j = (β ~Fi, ~Fj) ; ~Fi, ~Fj ∈ Fh

(Mα
3 )i,j = (αSi, Sj) ; Si, Sj ∈ Sh (3.59)

The units for the p-form mass matrices are [m3] · [α],[m] · [β],[ 1
m

] · [β] and [ 1
m3 ] · [α]

for the p = 0, 1, 2, 3 forms respectively. The values [α] and [β] are the units of the

scalar and tensor materials respectively. The stiffness matrices, Kγ
p , associated with

the bilinear form in (3.52) with scalar and tensor materials γ represented by α and β

respectively are listed in (3.60).

(Kβ
0 )i,j = (β∇Ni,∇Nj)

(Kβ
1 )i,j = (β∇× ~Wi,∇× ~Wj)

(Kα
2 )i,j = (α∇ · ~Fi,∇ · ~Fj) (3.60)

The units of the stiffness matrices are [m] · [β],[ 1
m

] · [β] and [ 1
m3 ] · [α] for the p = 0, 1, 2

forms respectively.

The matrices G,C and D are also referred to as incident matrices and play a

crucial role in conservation. The discrete Grad, Div and Curl matrices represent the

discrete version (3.61) of the continuous inclusion property (2.77).

∇N h ∈ Wh



76

∇×Wh ∈ Fh

∇ · Fh ∈ Sh (3.61)

These inclusion relations allow the matrices G,C and D to be written in terms of

the connectivity of the grid and do not depend on the coordinates of the grid. The

discrete Grad matrix has integer coefficients for the linear basis functions that depend

on the direction of the edge to which the two nodes are connected. The discrete Curl

and Div matrix also have integer coefficients for the linear basis functions with similar

dependencies.

The matrices that form the discrete differential natural operators for the gradient

G, curl C and divergence D can be constructed by the coefficients formed by the

inclusion relation (3.62).

∇Ni =
∑

j

gi,j
~Wj

∇× ~Wi =
∑

j

ci,j ~Fj

∇ · ~Fi =
∑

j

di,jSj (3.62)

The coefficients gi,j for the linear basis functions will be nonzero for a node i if this

node is attached to edge j. The coefficients ci,j will be nonzero if the edge i is a

member of the the face j. The coefficients of di,j will be nonzero if the face i is a

member of element j. The discrete differential operators are listed in (3.63).

Gi,j = gi,j

Ci,j = ci,j

Di,j = di,j (3.63)
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The matrices that form the discrete differential adjoint operators for the gradient

G̃, curl C̃ and divergence D̃ are listed in (3.64).

D̃ = M−1
0 GTM1

C̃ = M−1
1 CTM2

G̃ = M−1
2 DTM3 (3.64)

Having satisfied this inclusion property, the discrete differential forms now satisfy the

discrete exact sequence property and the commuting property.

ω
d−−−→ ω

d−−−→ ω
d−−−→ ω





y
IT IT





y
IT





y
IT





y

ωh G−−−→ ωh C−−−→ ωh D−−−→ ωh

The discrete differential operators listed above preserve the continuous property

of the exact sequence on the discrete level by defining the spaces used to represent

the forms and operators on the discrete level so that they maintain the same sequence

as in the continuous sequence.

The adjoint discrete differential forms have the same sequence as the continuous

forms.

ω
?d?←−−− ω

?d?←−−− ω
?d?←−−− ω





y
IT IT





y
IT





y
IT





y

ωh D̃←−−− ωh C̃←−−− ωh G̃←−−− ωh

In this operator sequence the role of the mass matrix is the discrete Hodge star

operator. This is discussed in more depth in [41].
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Combining the natural operators and adjoint operators the discrete version of the

vector identities shown in (2.78) can be constructed for the natural (3.65) and adjoint

(3.66).

CG = 0

DC = 0 (3.65)

C̃G̃ = 0

D̃C̃ = 0 (3.66)

3.3.7 Basis transformations

Defining the Jacobian as the transformation from the reference to the physical

frame in R3

J =
∂(x1, x2, x3)

∂(ψ1, ψ2, ψ3)
(3.67)

we can calculate the operators in the reference coordinates and project them, using

the Jacobian, to the physical coordinates.

Scalar gradient

If we define the gradient in the physical coordinates as ∇φ for an arbitrary scalar

function φ and the gradient operator in the reference coordinates as ∇̄φ then these

two operators are related by the Jacobian and transform as shown in (3.68)

∇φ = J−1∇̄φ (3.68)

This operation can be defined by looking at the gradient in the reference coordi-

nates and using the chain rule to determine the gradient in the physical coordinates.
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The component description of the gradient in the reference coordinates is shown in

(3.69).

(∇̄)i =
∂

∂ψi

(3.69)

Using the chain rule these components can be written in terms of the physical coor-

dinates (3.70) for the gradient operating on a scalar function φ

∂φ

∂ψi

=
∂xi

∂ψi

∂φ

∂xi

(3.70)

where ∂
∂xi

= (∇)i. Inverting the relation gives the transformation shown in (3.68).

The gradient is the natural differential operator for the 0-forms. The transformation of

the gradient of a reference 0-form basis function to the physical 0-form basis function

is shown in (3.71).

∇Ni = J−1∇̄N̄i (3.71)

Curl

As discussed in appendix A of [42], the curl of a vector ~U transforms from the

physical coordinate system ∇ × ~U to the reference coordinates ∇̄ × ~̄U as shown in

(3.72).

∇× ~U =
JT

|J|∇̄ ×
~̄U (3.72)

The curl is the natural differential operator for the 1-forms. The transformation of

the curl of a reference 1-form basis function to the physical 1-form basis function is

shown in (3.73).

∇× ~Wi =
JT

|J|∇̄ ×
~̄Wi (3.73)
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In addition to the transformations of the operators, due to their vector nature, the

vector 1-form and 2-form basis functions must also be transformed from the reference

to physical coordinates.

1-form basis functions

The inclusion relation ∇Ni ∈ {Wh} shows the 1-form basis functions are in the

same space as the gradient of the 0-form basis functions. The gradient of a 0-form

basis function can be written as a sum of 1-form basis functions. Due to this fact the

1-forms must transform in the same way as the gradient of the 0-form basis functions.

This transformation is called a covariant transformation and transforms the reference

basis function ~̄Wi to the physical basis function ~Wi.

~Wi = J−1 ~̄W i (3.74)

2-form basis functions

The inclusion relation ∇× ~Wi ∈ {Fh} shows the 2-form basis functions is in the

same space as the 1-form basis functions. The curl of a 1-form basis function can

be written as a sum of 2-form basis functions. Due to this fact the 2-form basis

function must transform in the same way as the curl of a 1-form basis function.

This transformation is called a contravariant transformation from the reference basis

function ~̄Fi to the physical basis function ~Fi.

~Fi =
JT

|J|
~̄F i (3.75)
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Divergence

The divergence, being a scalar function, does not need a transformation from the

reference to physical coordinates. But in order to match the units imposed on the

2-form basis function transformation, the reference element divergence ∇̄· must be

divided by the determinant of the Jacobian when a transformation to the physical

coordinates takes place (3.76)

∇· = 1

|J|∇̄· (3.76)

3.4 Properties of the Discrete p-forms

The tables for the p-form properties Table 1.1 and Table 2.2 can now be extended

with the properties discussed in the above sections giving Table 3.6.

Table 3.6: Properties of the p-forms

Property 0-form 1-form 2-form 3-form

Minimum Continuity Total Tangential Normal None
Integral Point Line Surface Volume

Derivative Grad Div Curl None
Physical Fluxes, Scalar

Type
Potentials Fields

Vector Densities Densities
Hilbert Space H(grad) H(div) H(curl) L2

Basis Function N W F S
Discrete Derivative G C D None
Adjoint Discrete

Derivative
None M−1

0 GTM1 M−1
1 CTM2 M−1

2 DTM3

Discrete
PushForward

1 J−1 1
|J|J

T None

Discrete
PullBack

J−1 1
|J|J

T 1
|J| None
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3.5 Spurious Modes

Spurious or non-physical modes arise in discrete simulations when the wrong dis-

crete p-form has been chosen to represent the physical variable. In electrodynamics

simulations the electric and magnetic fields are continuous in homogeneous regions.

A discrete simulation might therefore use three totally continuous nodal basis func-

tions to represent the three components of the fields. If the nodal basis functions are

chosen to represent the 1-form electric field for the equation (3.77) spurious modes

will arise.

∇× µ−1∇× ~E = k2ε ~E (3.77)

The reason spurious modes arise when nodal basis functions are used to describe

the electric field is in the choice of space [36]. Let ~N h be the vector set of totally

continuous nodal basis functions defined above. Using this space it is not possible, in

general, to represent a divergence free field (3.78).

{~v ∈ ~N : ∇ · ~v = 0} = {∅} (3.78)

In [43] the spurious modes are shown to be caused by the choice of the vector nodal

basis functions. If the divergence of equation (3.77) is performed the resulting diver-

gence equation (3.79) will only be satisfied if k2 = 0 or ∇ · ε ~E = 0.

k2∇ · ε ~E = 0 (3.79)

It was shown above that a divergence-free electric flux density cannot be constructed

using vector nodal basis functions. A field with zero divergence is called a non-static

solution to (3.77). Fields with k2 = 0 are called static solutions and can be described
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by the gradient of the scalar potential ~E = −∇φ. If nodal basis functions are used to

represent ~E then it is not possible to satisfy ∇ ×∇φ = 0, therefore the eigenvalues

k2 are non-zero giving rise to spurious modes. The vector nodal basis functions

provide a poor null space for the ∇×∇× operator resulting in spurious modes. The

problem was overcome by selecting basis functions that include the gradients of the

scalar potentials. The inclusion relations given above showed that ∇N h ∈ Wh so the

correct basis functions to use for the electric field are the 1-form edge basis functions.

The discrete differential forms framework provides this information at the outset and

the resulting operator provides the correct nullspace for the ∇×∇× operator.

The acoustic wave equation in the frequency domain (3.80) will have a similar

problem if the vector nodal basis functions are chosen.

∇∇ · ~v = −k2~v (3.80)

Taking the curl of (3.80) results in the equation (3.81).

−k2∇× ~v = 0 (3.81)

This equation will be satisfied if k = 0 or ∇× ~v = 0. Unfortunately the vector nodal

basis functions cannot, in general, represent a curl free field (3.82) any more than

they can represent a divergence free field.

{~v ∈ ~N : ∇× ~v = 0} = {∅} (3.82)

It was shown above that a vector variable represented by nodal basis functions cannot

represent a divergence free field. In this case the nodal basis functions provide a poor

approximation to the null space of the ∇∇· operator. If ∇∇ · ~v is not zero then k2
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cannot be zero, resulting in spurious modes. The solution is again to use the proper

basis functions to represent ~v. In this case the proper basis functions are the 2-form

face basis functions.

3.6 Examples

Solving partial differential equations becomes an exercise in combining the previ-

ous sections’ operators. In this section we will show examples from many different

fields including Electromagnetics, Linear Acoustics, and Linear Elasticity. The prop-

erties for the various Differential Forms listed in Table 3.6 make the choice of basis

functions for each variable obvious.

3.6.1 Scalar wave equations

The variational form for the second order scalar wave equation for φ which will

represent the velocity potential, density or the pressure is given in (3.83)

∂2

∂t2
(φ, φ∗) = −c2l (∇φ,∇φ∗)− c2l

∮

Γ
φ∗∇φ · n̂ ∀ φ∗ (3.83)

where φ ∈ H(grad) and φ∗ ∈ H0(grad) . Due to the test space used for test variable

φ∗ the boundary integral term on the right hand side is zero. This variational form also

presents the valid boundary conditions for this equation. The variable itself can be

specified on the boundary resulting in the Dirichlet boundary condition φ = D on ΓD

or the normal component of the gradient can be specified resulting in the Neumann

boundary condition ∇φ · n̂ = N on ΓN .

For the natural form of the scalar wave equation the variable φ is expanded in
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terms of the nodal basis functions resulting in a 0-form (3.84).

φ =
Nnodes
∑

i=1

αiNi (3.84)

Entering this expansion into the variational form (3.83) results in the explicit inte-

grodifferential form (3.85)

∫

Ω
∇ · ∇φNj = −

∫

Ω
∇φ · ∇Nj +

∮

Γ
Nj∇φ · n̂ ∀ Nj (3.85)

with boundary conditions

φ = D on ΓD , essential

∇φ · n̂ = N on ΓN , natural (3.86)

where ΓD and ΓN denote the boundaries for Dirichlet and Neumann boundary con-

ditions respectively and the essential and natural properties refer to the boundary

conditions that are automatically enforced with no matrix manipulation (natural)

and those that must be enforced by matrix manipulation (essential). The discrete

form of (3.85) is shown in (3.87)

M0
∂2~β

∂t2
= −K

c2
l

0
~β (3.87)

The non-adjoint problem can also be written in mixed finite element form using

the variational method for the first order scalar wave equations for pressure P and

velocity ~v.

∂

∂t
(P, P ∗) = (γP0)(~v,∇P ∗)− (γP0)

∮

Γ
P ∗~v · n̂ ∀ P ∗ (3.88)

∂v1

∂t
(~v,~v∗) = − 1

ρ0

(∇P,~v∗) ∀ ~v∗
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where P ∈ H(grad) , P ∗ ∈ H0(grad) , ~v ∈ H(curl) and ~v∗ ∈ H0(curl) . In this

case the pressure is expanded as in (3.84), but the velocity is expanded as in (3.89).

~v =
Nedges
∑

j=1

βj
~Wj (3.89)

Using a curl-conforming space for a divergence conforming variable would seem to

be nonconforming with respect to the equations at first glance. But it will be shown

that the resulting discrete form of this solution is exactly the same as (3.87). The

resulting discrete form of the equations in (3.88) are listed in (3.90)

M0~̈α = −GTM1
~̇β +

∮

Γ
Nl~̇v · n̂ (3.90)

M1
~̇β = M1G~α

where the boundary condition matrix in this case is:

∮

Γ
Nl~u · ~n = GB1

~β = 0, Nl ∈ H0(grad, Ω̄) (3.91)

The mixed matrix form for the second order equations is represented in (3.92).










M1 −M1G

−GTM1 0





















~̇β

~α











=











0

M0~̈α











(3.92)

Rewriting this in single equation form (3.93) results in the matrix equation given

in (3.87).

M0
∂2~β

∂t2
= −c2l GTM1G~β = −K

c2
l

0
~β (3.93)

An alternate method is to use the adjoint form of the Laplacian. In this form the

pressure P is discretized as a piecewise discontinuous 3-form using the volume basis

functions (3.94) and the velocity is discretized as a 2-form (3.95).

P =
Nelements

∑

i=1

αiSi (3.94)
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~v =
Nfaces
∑

i=1

βi
~Fi (3.95)

The variational form is given in (3.96)

∂

∂t
(P, P ∗) = −(γP0)(∇ · ~v, P ∗) ∀ P ∗

∂v1

∂t
(~v,~v∗) =

1

ρ0

(P,∇ · ~v∗)− 1

ρ0

∮

Γ
P~v∗ · n̂ ∀ ~v∗ (3.96)

with the new solution and test spaces spaces for the variables given by P ∈ L2 ,

P ∗ ∈ L2, ~v ∈ H(div) and ~v∗ ∈ H0(div) .

The discrete form of the adjoint scalar wave equations is shown in (3.97).

M3~̇α = M3D~β (3.97)

M2
~̇β = −DTM3~α +

∮

Γ
Ni~v

∗ · n̂

The essential and natural boundary conditions are switched 0-form scalar wave

equation and are given in (3.98). The essential and natural boundary conditions are

ooposite from the previous wave equation.

∇P · n̂ = N on ΓN , essential

P = D on ΓD , natural (3.98)

The boundary matrix in this case is zero due to the choice of test space and is

shown in (3.99).

∮

Γ
P~v∗ · n̂ =

∮

Γ
Ni
~Fj · n̂ = 0, ~Fj ∈ H0(div, Ω̄) (3.99)

In mixed second order matrix form the equations in (3.97) become (3.100).











M2 DTM3

D 0





















~̇β

~α











=











0

~̈α











(3.100)
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In symmetrized form (3.100) becomes (3.101).











M2 DTM3

M3D 0





















~̇β

~α











=











0

M3~̈α











(3.101)

3.6.2 Electromagnetic wave equations

The variational form of the magnetic flux density wave equation will be derived

from the first order equations listed in (2.27). The variational form of these equations

using ~B ∈ H(div) , ~B∗ ∈ H0(div) , ~E ∈ H(curl) , and ~E∗ ∈ H0(curl) results in

the first order variational form (3.102) and (3.103).

∂

∂t
(µ−1 ~B, ~B∗) = −(µ−1∇× ~E, ~B∗)− (µ−1σMµ

−1 ~B, ~B∗)− (µ−1 ~Ms, ~B
∗) ∀ ~B∗ (3.102)

∂

∂t
(ε ~E, ~E∗) = (µ−1 ~B,∇× ~E∗)− (σE

~E, ~E∗)− ( ~J, ~E∗)+
∮

Γ

~E∗×µ−1
~B · n̂ ∀ ~E∗ (3.103)

In this case the vector identity (B.3) is used to form (3.103). This integration is

shown in (3.104).

∫

Ω
∇× µ−1 · ~E∗ =

∫

Ω
µ−1 ~B · ∇ × ~E∗ +

∫

Ω
∇ · ( ~E∗ × µ−1 ~B) (3.104)

The last term on the right hand side of (3.104) can be integrated using Gauss’s law

resulting in the boundary term (3.105).

∫

Ω
∇ · ( ~E∗ × µ−1 ~B) =

∮

Γ

~E∗ × µ−1
~B · n̂ (3.105)

For the magnetic flux density wave equation ~B, ~Js, and ~Ms are all discretized in terms

of 2-form face basis functions (3.106),(3.107), and (3.108),

~B =
Nfaces
∑

i=1

bi ~Fi (3.106)
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~J =
Nfaces
∑

i=1

ji ~Fi (3.107)

~M =
Nfaces
∑

i=1

mi
~Fi (3.108)

For the electric field equation we will discretize ~E in terms of the 1-form edge basis

functions Wi ∈ Wh (3.109).

~E =
Nedges
∑

i=1

ei
~Wi (3.109)

Entering the discrete form of the magnetic flux density along with the discrete

form of the electric field given above results in the discrete first order Maxwell’s

equations (3.110) and (3.110).

M
µ−1
2
~̇b = −M

µ−1

2 C~e−M
(µ−1σMµ−1)
2

~b−M
µ−1

2 ~m (3.110)

Mε
1~̇e = −CTM

µ−1

2
~b−M

σE
1 ~e−X~j −

∮

Γ

~Wj · ~B × n̂ (3.111)

The boundary conditions for this case are:

~B · n̂ = ~D on ΓD

~B × n̂ = ~N on ΓN (3.112)

The boundary condition matrix in this case evaluates to zero (3.113) due to the choice

of test space for ~E∗.

∮

Γ

~Wk · ~B × n̂ = ( ~Fi, n̂× ~Wj)Γ = 0, ~Wj ∈ H0(∇×, Ω̄) (3.113)

Combining the first order equations in a zero source region and differentiating the

magnetic flux density (3.110) results in the second order mixed discrete wave equation

(3.114)










Mε
1 CTM

µ−1

2

M
µ−1

2 C 0





















~̇e

~b











=











0

−M
µ−1

2
~̈b











(3.114)
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Due to the zero entry on the right hand side (3.114) can be written in a form

similar to (3.118). The second order equation for the magnetic flux density including

the source terms is given in (3.115)

M2
~̈b+ Y~̇b− Z~b = −M2C(Mε−1

1 )−1CTM2
~b+ G~j −M2 ~̇m+ M

(ε−1σM )
2 ~m (3.115)

where

Yi,j = ((σM − εσE)~Fi, ~Fj)

Zi,j = ((σMε
−1σE)~Fi, ~Fj)

Gi,j = (ε−1∇× ~Fi, ~Fj) (3.116)

The variational form of the second order electric field wave equation (2.28) is

shown in the variational form of this equation becomes (3.117).

∂2

∂t2
(ε ~E, ~E∗) +

∂

∂t
((σE + µ−1σMε) ~E, ~E

∗) + (µ−1σMσE
~E, ~E∗) =

−(µ−1∇× ~E,∇× ~E∗)− (µ−1σM
~Js, ~E

∗)− (µ−1∇× ~Ms, ~E
∗)

− ∂

∂t
( ~Js, ~E

∗)−
∮

Γ
µ−1( ~E∗ ×∇× ~E) · n̂ ∀ ~E∗ (3.117)

Entering the expansions for the electric field and electric and magnetic current

densities results in the second order electric wave equation (3.118)

Mε
1~̈e+ T~̇e+ U~e = −K

µ−1

1 ~e−V~j −CT ~m−X~̇j −
∮

Γ
(µ−1 ~Wj ×∇× ~E) · n̂ (3.118)

where

Ti,j = ((σE + µ−1σMε) ~Wi, ~Wj)

Ui,j = ((µ−1σMσE) ~Wi, ~Wj)

Vi,j = ( ~Wi, µ
−1σM

~Fj)

Xi,j = ( ~Wi, ~Fj)
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The essential and natural boundary conditions can be determined from the boundary

condition term in the variational equation (3.117). In this wave equation the essential

boundary condition corresponds to the Dirichlet boundary condition and the natural

boundary condition corresponds to the natural boundary condition (3.119).

~E × n̂ = ~D on ΓD

∇× ~E × n̂ = ~N on ΓN (3.119)

The boundary term can be evaluated in terms of the discrete basis functions and

is shown in (3.120). The resulting matrix is zero due to the choice of test space.

∮

Γ
µ−1( ~E∗ ×∇× ~E) · n̂ = (µ−1∇× ~Wi, ~Wj × n̂)Γ = 0, ~Wj ∈ H0(curl) (3.120)

Rewriting the discrete second order electric wave equation in a charge and source

free region results in the mixed form of this wave equation (3.121).











M
µ−1

2 M
µ−1

2 C

CTM
µ−1

2 0





















~̇b

~e











=











0

−Mε
1~̈e











(3.121)

In this form it is apparent that the 1-form stiffness matrix K1 can be written in

a alternative form. This form is shown in (3.122).

K
µ−1

1 = CTM
µ−1

2 C (3.122)

3.6.3 Linear acoustic vector wave equations

The variational form of the second order adjoint acoustic wave equation was shown

above in (3.96). The spaces used to discretize the adjoint acoustic vector wave equa-

tion are the spaces used for the natural scalar wave equation. This leads to the



92

discretizations for the velocity (3.89) and the pressure (3.84). For the vector wave

equation the boundary conditions are imposed on the velocity instead of the pressure.

In this case the boundary conditions are given by (3.123).

~v × n̂ = ~D on ΓD

~v · n̂ = ~N on ΓN (3.123)

The discrete equations are the same as (3.90) with the second derivative on the

velocity instead of the pressure.

M0~̇α = GTM1
~β

M1
~̈β = −c2l M1G~̇α (3.124)

The boundary matrix in this case evaluates to zero (3.125) due to the choice of

the test space used for ~v∗ just as in the natural scalar wave equation case.

∮

Γ
Nj(~v · n̂) =

∮

Γ
Nj( ~Wi · n̂) = 0, Nj ∈ H0(∇, Ω̄) (3.125)

The mixed form discretization of (3.126) with cl = 1 becomes:











M0 −GTM1

−G 0





















~̇α

~β











=











0

~̈β











(3.126)

In symmetrized form with (3.126) becomes:











M0 −GTM1

−M1G 0





















~̇β

~α











=











0

M1~̈α











(3.127)

The variational form of the second order vector acoustic wave equation (2.31) is

shown in (3.128).

∂2

∂t2
(~v,~v∗) = −(c2l∇ · ~v,∇ · ~v∗) + c2l

∮

Γ
(∇ · ~v)~v∗ · n̂ ∀ ~v∗ (3.128)
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From the boundary term of the variational form the boundary conditions can deter-

mined. The boundary conditions for this variational form are shown in (3.129).

~v · n̂ = ~g on ΓD

∇ · ~v = h on ΓN (3.129)

The velocity will be discretized in terms of 2-form face basis functions.

~v =
Nfaces
∑

i=1

βi
~Fi (3.130)

The discrete acoustic vector wave equation is shown in (3.131).

M2
~̈β = −(K

c2
l

2 −
∮

Γ
(∇ · ~Fj)~Fi

∗ · n̂)~β (3.131)

where K
c2
l

2 is symmetric positive semi-definite 2-form stiffness matrix with material

equal to the sound speed squared c2l . The boundary term in the discrete acoustic

vector wave equation evaluates to zero due to the choice of test space.

∮

Γ
(∇ · ~Fj

~Fi

∗ · n̂) = (∇ · ~Fj, ~Fi · n̂)Γ = 0, ~Fi ∈ H0(div) (3.132)

In symmetrized mixed form this becomes:











M2 −M3D

−DTM3 0





















~̇α

~β











=











0

M2
~̈β











(3.133)

Reducing the mixed form to a single equation shows the 2-form stiffness matrix

can be written in terms of the divergence differential operator matrix D and the

3-form mass matrix M3 (3.134).

K2 = DTM3D (3.134)
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3.6.4 Linear elastic wave equations

The variational form of the second order displacement equation for a linear isotropic

elastic medium is given by (3.135)

∂2

∂t2
(~u, ~u∗) = −(µ∇×∇× ~u, ~u∗) + ((2µ+ λ)∇(∇ · ~u, ~u∗)− (~f, ~u∗) ∀ ~u∗ (3.135)

To form the discretization of this equation with ~u represented as a 2-form (3.136),

the natural form of the Grad-Div operator is combined with the adjoint form of the

Curl-Curl giving discrete version of this equation with no body forces present (3.137)

~u =
Nfaces
∑

i=1

αi
~Fi (3.136)

M2
∂2~α

∂t2
= −{µM2CM−1

1 CTM2 + K
(2µ+λ)
2 }~α (3.137)

For ~u expanded as a 1-form (3.138) the natural form of the Curl-Curl operator is

combined with the adjoint form of the Grad-Div operator giving (3.139)

~u =
Nedges
∑

i=1

βi
~Wi (3.138)

M1
∂2~β

∂t2
= −{Kµ

1 + (2µ+ λ)(M1GM−1
0 GTM1)}~β (3.139)

3.6.5 Linear magnetohydrodynamic wave equations

The linear magnetohydrodynamics equations represent equations that are outside

of the discrete forms IBVP representations shown in Chapter 2. The linear magneto-

hydrodynamics equations (2.48) have the variational forms listed in (3.143), (3.145)

and (3.147). Each of this variational forms will be analyzed in turn resulting in a

mixed form discrete system.



95

The 2-form velocity ~v = ~v1 and magnetic flux density ~B = ~B1 will be in the

H(div) space, their corresponding test variables ~v∗ and ~B∗ are in the space H0(div) .

The 3-form pressure P1 = P and test variable P ∗ will be in L2. Both the perturbed

velocity and magnetic field will be expanded in terms of 2-form face basis functions

~F , while the perturbed pressure will be expanded in terms of 3-form volume basis

functions S.

~v =
Nfaces
∑

i=1

βi
~Fi (3.140)

~B =
Nfaces
∑

i=1

bi ~Fi (3.141)

P =
Nvols
∑

i=1

piSi (3.142)

Pressure equation

∂

∂t
(P, P ∗) = −γP0(∇ · ~v, P ∗) ∀ P ∗ ∈ L2 (3.143)

No integration by parts is required to form this equation do to the inclusion ∇ · ~v ∈

L2. The resulting discrete equation is shown in (3.144).

~̇p = −γP0D~β (3.144)

Velocity equation

The variational form for the first order velocity equation is shown in (3.145).

ρ0
∂

∂t
(~v,~v∗) = (P,∇ · ~v∗)− (

1

µ0

~B0 × ~v∗, ~B) (3.145)

−
∮

Γ
P~v∗ · n̂+

∮

Γ

~B × (
1

µ0

~B0 × ~v∗) · n̂ ∀ ~v∗ ∈ H0(div)



96

This variational form uses (B.2) and the combination of the operators (B.1) and

(B.3) to derive the variational formulation. Due to the choice of test space H0(div) ,

both of the boundary terms are zero.

The discrete form of this equation (3.146) is formed from the normal pressure

gradient term already derived above and the new cross term which will be examined

below.

M2
~̇β = c2l D

TM3~p−MT
×(

~va√
µ0ρ0

)M−1
1 CTM2

~b (3.146)

Magnetic Field Part

The second part on the right hand side of the velocity equation over the entire

domain is given by:

−
∫ ~B0

µ0

×∇× ~B1 · ~FjdΩ

Using the vector identity:

~A · ( ~B × ~C) = ~B · ( ~C × ~A) = ~C · ( ~A× ~B)

gives:

−
∫

∇× ~B1 · (~Fj ×
~B0

µ0

)dΩ

swapping the cross product terms:

∫

∇× ~B1 · (
~B0

µ0

× ~Fj)dΩ

Since the quantity ~B0 is constant throughout each cell the quantity
~B0

µ0
× ~Fj ∈ W if

~h =
~B0

µ0
× ~Fj ∈ W , then:

∫

∇× ~B1 · ~hdΩ
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using the identity:

∇ · (~a×~b) = ~b · (∇× a)− ~a · (∇× b)

integration by parts gives:

∫

∇× ~B1 · ~hdΩ =
∫

∇ · ( ~B1 × ~h)dΩ +
∫

∇× ~h · ~B1dΩ

Integrating the first part on the right hand side:

∫

∇ · ( ~B1 × ~h)dΩ =
∫

~B1 × ~h · n̂dΓ

this equation is zero if ~B · ~n = 0 on Γ. Using the inclusion relation ∇× ~Wi ∈ F the

second term on the right hand side becomes in discrete form:

CTM2
~b.

This is without the cross product for ~h ,including the definition. This term becomes:

(−MT
×)(

~va√
µ0ρ0

)M−1
1 CTM2

~b+
∫

(
~B0

µ0

× ~Fj) · (n̂× ~B1)dΓ

where ~va =
~B0√
µ0ρ0

and the entire velocity equation was given in (3.146). The M×

matrix will be discussed below.

Magnetic Field Equation

∂

∂t
( ~B, ~B∗) = (∇× (~v × ~B0), ~B

∗) ∀ ~B∗ (3.147)

The right hand side is similar to the magnetic field term in the velocity equation.

Setting ~g =
√
µ0ρ0~va × ~v1 and integrating over the entire domain:

−
∫

∇× (~g) · ~FjdΩ
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Using the inclusion relation: ∇× ~Wi ∈ F the right hand side becomes:

−M2CM−1
2 M×(

√
µ0ρ0~va)~v

Combining these equations:

M2
~̇b = −M2CM−1

1 M×(
√
µ0ρ0~va)~v

This discrete formulation for the first order magnetic flux density equation becomes

(3.148).

~̇b = −CM−1
1 M×(

√
µ0ρ0~va)~v (3.148)

Cross Product Matrix

Given a quantity expanded in terms of the 2-form face basis functions such as the

velocity (3.149).

~v1 =
Nfaces
∑

i=1

βi
~Fi (3.149)

As shown in Chapter 2 the wedge product with a constant vector, which can also be

expanded as a 2-form, results in a 1-form (3.150).

~Fi × ~B0 ∈ W (3.150)

The resulting quantity will be a 1-form expanded in the edge basis functions. This

quantity is the electric field (3.151) derived form the infinite conductivity form of the

Lorentz equation (3.152).

~E1 =
Nedges
∑

i=1

ei
~Wi (3.151)

~E = ~v × ~B0 (3.152)
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Performing the necessary inner products

Nedges
∑

i=1

(
∫

~Wi · ~WjdΩe)ei =
Nfaces
∑

k=1

(
∫

~Fk · ~Wj × ~B0dΩe)βi

Rearranging:

Nedges
∑

i=1

(
∫

~Wi · ~WjdΩe)ei =
Nfaces
∑

k=1

(
∫

~B0 · ~Wj × ~FkdΩe)βi

results in the matrix form of the 2-form wedge product giving the cross product in

vector calculus (3.153).

Me~e = M×( ~B0)~β (3.153)

where M×( ~B0) is given in (3.154).

M×( ~B0) ≡
∫

~B0 · ~Wj × ~FkdΩ (3.154)

3.6.6 Second order linear magnetohydrodynamics

Taking the time derivative of the discrete velocity equation (3.155)

Mf ~̈v = c2l D
TM3~̇ρ−M×(

~va√
µ0ρ0

)M−1
1 CTM2

~̇b (3.155)

Substituting the discrete pressure (3.144) and magnetic field equations (3.148) gives

the second order magnetohydrodynamics equation for velocity (3.156).

M2~̈v = −c2l K2~v + MT
×(~va)M

−1
1 K1M

−1
1 M×(~va)~v (3.156)

To perform the wedge product for the 2-forms, they must first be converted to

1-forms using the Hodge star operator. These two operations can be seen in (3.156)

where the 1-form mass matrices are inverted and coupled with the 1-from stiffness
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matrix K1 forming a discrete Hodge star operator. Once wedged the resulting 2-

form is wedged again to convert back to 1-form indicated by the 2-form mass matrix

inversion.
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Chapter 4

Linear Algebraic System Analysis

4.1 Iterative Methods

Disregarding the time derivative of the wave equations gives a linear algebraic

system of equations (4.1)

A~x = ~b (4.1)

where A in the case of the wave equations is a symmetric positive definite mass matrix,

~b is formed from the stiffness matrix and any sources and ~x is the vector of degrees

of freedom. Even though the time stepping algorithm is explicit, the finite element

method requires a solution of this system at every time step. This requirement in

turn constrains the solution method used for the system. An inefficient solver will

make large problems intractable. For this reason iterative methods are used to solve

the system in (4.1).

Two main types of algorithms are used to solve a system such as (4.1), direct(non-

iterative) and iterative methods. The direct methods entail factoring the matrix A
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using an algorithm such as Gaussian Elimination to obtain an upper triangular form.

Once the matrix is factored, the last equation is trivial to solve and the solution can

be used to solve the next to last equation and so on. This is refereed to as back

substitution. An operation count for Gaussian elimination and back substitution for

a matrix with n rows and n columns gives a result that is proportional to n3, O(n3).

For one of the simulations in this dissertation the number of unknowns is on the

order of n = 4e6. Using 32 processors with a theoretical floating point operations

per second count of 4 GFlops at maximum efficiency will take 15.8 years to factor

the matrix making direct methods useless for large problems. Sparse direct methods

such as SuperLU [44] can efficiently solve problems with a large number of degrees

of freedom. In the case of this dissertation the linear system solution involves a well-

conditioned mass matrix for which iterative methods are more efficient than sparse

direct methods.

Iterative methods for (4.1) have much lower operation counts for very large prob-

lems. A good reference on iterative methods is [45]. The simplest iterative method

is given in (4.2) where l = 0, 1, 2, ... and τ is a parameter.

~xl+1 = ~xl − τ(A~xl −~b) (4.2)

This method starts with an initial guess for ~x0 and successively applies the formula

utilizing only matrix-vector multiplies.

Iterative methods are further classified into stationary and non-stationary meth-

ods. The stationary methods are comprised of the Jacobi,Gauss-Seidel and Symmet-

ric Over Relaxation (SOR) iterative methods. These methods are best described by
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introducing a matrix splitting (4.3).

A = M−N (4.3)

This splitting is comprised of a matrix easy to invert M and the remainder N. The

iterative solution method for (4.1) using this splitting is listed in (4.4)

M~xk+1 = N~xk +~b

~xk+1 = M−1N~xk + M−1~b (4.4)

The three different types of methods can be classified using another matrix splitting

(4.5). In this splitting the matrix D is the diagonal of A, −E is the lower triangular

portion without the diagonal and −F is the upper triangular portion without the

diagonal.

A = D− E− F (4.5)

The Jacobi iterative method uses the matrices defined in (4.6) in the stationary

iterative method (4.4). The M matrix is the diagonal which is trivial to invert and

N is the remainder of the matrix A.

M = D

N = E + F (4.6)

The Gauss-Seidel method incorporates more of the matrix A by including the entire

lower triangular portion in M shown in (4.7).

M = D− E

N = F (4.7)
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The SOR method is a generalization of the Gauss-Seidel method. The splitting

matrices contain arbitrary combinations of D parameterized by a scalar 0 ≤ ω ≤ 2

shown in (4.8).

M =
1

ω
D− E

N =
1− ω
ω

D + F (4.8)

For a value of ω = 1 the SOR method reduces to the Gauss-Seidel method. Deter-

mining the optimum value for SOR is difficult unless the spectrum of the matrix is

known. Determining the optimum value is therefore accomplished by trial and error.

It can be shown that for the symmetric positive definite mass matrix solutions

in this dissertation all of these methods will converge. The convergence requirement

is given by ρ(M−1N) < 1 for Gauss-Seidel and SOR where ρ(M−1N) is the largest

eigenvalue of the matrix M−1N and ρ(D−1A) < 2 for the Jacobi iterative method.

Non-stationary methods are methods with non-constant coefficients for the itera-

tion and cannot be written in the form (4.4). These non-stationary iterative methods

include the steepest descent method and the conjugate gradient method. Both of

these methods use the minimization of the functional (4.9) to form the iteration

(4.10).

f(~x) =
1

2
~xTA~x−~bT~x (4.9)

xk+1
i = xk

i + αkdk
i ; i = 1, ..., n ; k = 0, 1, 2, ... (4.10)

Here the values for αk and dk
i represent the step length and search direction respec-

tively. The algorithm determines the minimum by creating a gradient and following

this gradient in the opposite direction until convergence. Because the gradient will
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not necessarily point to the global minimum a step length is used to limit the variable

change. The difference between steepest descent and conjugate gradient involves the

choices for α and d. It can be shown that the convergence of conjugate gradient is as

good as optimum SOR without requiring knowledge of the spectrum, it can also be

used on matrices with arbitrary sparsity patterns and can be easily preconditioned

for faster convergence.

Below in Section 4.3 an analysis of the preconditioned conjugate gradient solution

is documented. The preconditioning process further improves the convergence of the

conjugate gradient method by improving the condition number of the matrix. The

condition number is the ratio of the largest to smallest eigenvalues of the matrix.

Convergence is a function of condition number; when the condition number can be

made smaller, the convergence is increased.

4.2 Differential Operator Stencils

An informative method for analyzing the differential operators is to examine the

connectivity for each operator on a uniform Cartesian mesh. Through this analysis it

will be shown that the discrete differential forms method reduces to simple standard

finite difference operators on Cartesian grids. All of the analysis performed on this

operators is therefore valid for the discrete differential forms method as well.

The stencil of an operator describes the discrete connectivity and weighting coeffi-

cients for that operator. An example of a stencil is constructed for a two-dimensional

scalar Laplacian ∂2φ
∂x2 + ∂2φ

∂x2 = 0 acting on a scalar function φ. Using the central differ-

ence operator (4.11) for both partial differential terms results in the two-dimensional
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finite difference Laplacian (4.12) where ∆h = 1.

∂2φ

∂x2
=
φi+1 − 2φi + φi−1

∆h2
+O(∆h2) (4.11)

−φi+1,j+1 − φi+1,j−1 + 4φi,j − φi−1,j+1 − φi−1,j−1 = 0 (4.12)

The values φi,j represent the value of the scalar function φ at a node described by the

index i in the x-direction and index j in the y direction. The stencil corresponding

to the scalar Laplacian (4.12) is shown in Figure 4.1.

���
�

���
�

���
�

���
�

��	
	

−4
+1

+1

+1

+1

Figure 4.1: Scalar 2-Dimensional Laplacian

The mesh consists of a 3x3x3 hexahedral domain with constant node spacing

h = 1. Each of the p-forms natural and adjoint operators are examined in their

full form and mass lumped form if appropriate. The mass lumped form [46] of the

operator involves a special integration rule that results in diagonal mass matrices.

This would correspond to a mechanics problem where the mass of the system is not

distributed continuously through the domain, but defined only at the nodes, thus

lumping the mass at the nodes. Mass lumping is used in this section only to compute

the stencils and is not advised for non-Cartesian grids.
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4.2.1 Discrete Differential Operators

The stencils for the discrete gradient G, curl C and divergence operators D de-

scribed in (3.63) are shown in Figure 4.2, Figure 4.3 and Figure 4.4 respectively.

The discrete gradient stencil shows the inclusion relation for the node in the center

and the edges radiating out of the node. The coefficients are based on the arbitrary

direction of each edge.

1

1
1

-1

-1
-1

Figure 4.2: Discrete gradient operator

The discrete curl is the graphical representation of the inclusion relation relating

the Wh to Fh. The edge in the center is related to the four faces sharing that edge.

The coefficients are based on the arbitrary edge and face directions.

The discrete divergence is the graphical representation of the inclusion relation

relating the Fh to L2. The face in the center shares only the two elements. The

coefficients are determined by the connectivity of the face and the arbitrary direction

of the face.
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1
1

-1
-1

Figure 4.3: Discrete curl operator

1

-1

Figure 4.4: Discrete divergence operator
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4.2.2 0-form operators

In Figure 4.5 the stencil for the 0-form Div-Grad operator M−1
0 K0 with lumped

mass matrix M0 and full stiffness matrix K0 is presented. The matrices are con-

structed with unit materials. The figure shows the connectivity (lines) and matrix

coefficient for a node in the center of the mesh forming a matrix stencil. This stencil

corresponds to a 27 point finite difference stencil for a three-dimensional Laplacian.
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Figure 4.5: 0-form DivGrad operator

The accuracy of the stencil can be verified utilizing the tools used in finite differ-

ence analysis. A three dimensional scalar function is expanded in a Taylor series of

several orders larger than the order of the differential operator. A sum of the product

of the coefficients and the Taylor series evaluated at the coefficient’s node produces

a new series. This series will have only the lowest order non-zero coefficients of the

series remaining. The lowest order coefficients determine the accuracy of the method.
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For the 27-point stencil listed above the accuracy is given in (4.13).

h2{ 1

12
(f400 + f040 + f004) +

1

3
(f022 + f202 + f220)}+H.O.T. (4.13)

The notation used in for the coefficients in this equation show the order of the series

coefficient fi,j,k where i, j, k are the order of the coefficient for the x, y and z series

terms respectively. In this case the stencil is second order accurate with all coefficients

of lower order equal to zero. The term H.O.T. refers to the higher order terms in the

expansion.

If both the mass matrix and stiffness matrices are mass lumped the common

three-dimensional 7-point stencil is obtained and is shown in Figure 4.6.

1

1 1

-6

1
1

1

Figure 4.6: 0-form DivGrad Operator with Lumped Stiffness Matrix

Using the same series expansion for the three dimensional scalar function as in the

non-lumped case, the accuracy of the operator is shown to be second order (4.14).

h2

12
(f400 + f040 + f004) +H.O.T. (4.14)

The discrete differential forms method on a uniform Cartesian with mass-lumped

matrices reduces to the commonly used finite difference stencils for the 0-form differ-

ential operators.
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4.2.3 1-form operators

The three components of the 1-form natural Curl-Curl operator with lumped mass

matrix and unit materials, M−1
1 K1, are shown in Figure 4.7. The numbers represent

the non-zero coefficients of the system located for a specific edge in the mesh located at

the midpoints of each corresponding edge. The finite difference operator for the Curl-
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Figure 4.7: 1-form Curl-Curl Operators

Curl operator involves three separate operators for the resulting three directions of the

operator. The accuracy of the above lumped finite element operator can be analyzed

by taking each of the three operator stencils shown in Figure 4.7 and expanding them

in Taylor series. The sum of the individual component’s Taylor series results in a

compound series. The series includes the operator and the truncation error of the

equivalent finite difference stencil plus higher order terms. The finite difference stencil

for the Curl-Curl operator is second order accurate. The sum of the Taylor series for

the lumped Curl-Curl operator is shown in (4.15).

h2{1
3
(f400 + f004 + f040) +

1

6
(f220 + f202 + f022 − f112 − f121 − f211) (4.15)

− 1

12
(f130 + f310 + f103 + f301 + f013 + f031}+H.O.T.
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The lowest order term that is not part of the operator is proportional to h2 on

an orthogonal structured mesh with constant mesh spacing giving a second order

accurate operator.

If both the mass matrix and the stiffness matrix are lumped the Curl-Curl operator

reduces to the simplest finite difference stencil shown in Figure 4.8. Although the
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1
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Figure 4.8: 1-form Curl-Curl Operator with Lumped Stiffness Matrix

truncation error is also second order accurate the truncation error (4.16) for the

lumped mass matrix and lumped stiffness matrix is much simpler due to the reduced

connectivity of the stencil.

h2

12
(f400 + f004 + f040 − f130 − f310 − f103 − f301 − f013 − f031) +H.O.T. (4.16)

The three components of the 1-form adjoint Grad-Div operator GM−1
0 GTM1 with

lumped mass matrices and unit materials are shown in Figure 4.9. This stencil cor-

responds to a standard second order Grad-Div finite difference stencil. The stencil

for the x-component of the operator ∂2

∂x2 + ∂
∂x

∂
∂y

+ ∂
∂x

∂
∂z

is expanded in a central dif-

ference operator for the second order x-derivative while the cross terms are expanded
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Figure 4.9: 1-form Adjoint Grad-Div Operator

in central difference at half intervals. The truncation error for this operator (4.17) is

the same as the finite difference operator and is second order accurate.

h2

12
(f400 + f004 + f040 − f130 − f310 − f103 − f301 − f013 − f031) +H.O.T. (4.17)

Using the vector identity (B.6) the Curl-Curl and Grad-Div operators can be

combined into the 1-form vector Laplacian. As can be seen in the Figure 4.10 the

three components of the stencils are decoupled. They do not share any degrees of

freedom as in the three components of the Curl-Curl and Grad-Div operators. Each

component of the vector Laplacian is the same as a three-dimensional scalar Laplacian

stencil.

The three decoupled operators in the 1-form vector Laplacian result in a simplified

truncation error (4.18) when combined and expanded in the Curl-Curl and Grad-Div

operators.

h2

12
(f400 + f004 + f040) +H.O.T. (4.18)
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Figure 4.10: 1-form Laplacian

4.2.4 2-form operators

The 2-form operators from the natural Grad-Div, adjoint Curl-Curl and Vector

Laplacian can all be examined as in the Section 4.2.3. Since the operators are defined

for the 2-form face basis functions the stencils use the face centroids as the stencil

locations instead of the edge midpoints as in the 1-from case.

The natural Grad-Div operator is shown in Figure 4.11. This stencil corresponds

o the operator M−1
2 K2 with a mass-lumped mass matrix and unit materials. If both

the mass matrix and the stiffness matrix are lumped in this case the resulting stencil

is the same.

If the 2-form Grad-Div operator is examined for accuracy as in the section for

1-form operators, the resulting truncation error (4.19) is second order accurate and

is the same as the 1-form Grad-Div truncation error.

h2

12
(f400 + f004 + f040 − f130 − f310 − f103 − f301 − f013 − f031) +H.O.T. (4.19)

The three components of the vector adjoint Curl-Curl operator for the 2-forms

CM−1
1 CTM2 are shown in Figure 4.12. This stencil shows the same configuration
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Figure 4.11: 2-form Grad-Div Operator
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Figure 4.12: 2-form Adjoint Curl-Curl Operator
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as in the 1-form Curl-Curl operator, Figure 4.8, with both mass and stiffness matrix

lumped. The difference is only in the location of the coefficients. The truncation

error for the 2-form Curl-Curl operator (4.20) is the same as in the 1-form Curl-Curl

operator .

h2

12
(f400 + f004 + f040 − f130 − f310 − f103 − f301 − f013 − f031) +H.O.T. (4.20)

The 2-form Grad-Div and adjoint Curl-Curl operator can be combined to form

the vector Laplacian as in the section for 1-form operators. The three components of

the operator are shown in Figure 4.13. Just as in the 1-form vector Laplacian, the

three stencils for the 2-form vector Laplacian are decoupled and the stencil for each

component is the same as a three-dimensional scalar Laplacian.
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Figure 4.13: 2-form Laplacian

The truncation error for the vector Laplacian (4.21) is identical to the 1-form

Laplacian.

h2

12
(f400 + f004 + f040) +H.O.T. (4.21)
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4.2.5 3-form operators

The adjoint DivGrad operator DM−1
2 DTM3 developed first by Raviart and Thomas

in two dimensions is shown in mass lumped form for the three dimensional operator

in Figure 4.14. This operator corresponds to the common 7-point stencil using the

cell centers instead of the node centering as in the 0-form operator.
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Figure 4.14: 3-form DivGrad operator

The Taylor expansion for the stencil given in Figure 4.14 is shown in (4.22).

h2

12
(f400 + f040 + f040) +H.O.T. (4.22)

Just as in the 0-form scalar Laplacian case this operator is second order accurate.

4.3 Mass Matrix Solution Scaling

The discrete wave equations derived in the previous chapter include a linear solve

of the mass matrix for the explicit time stepping method. Lower order integration
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rules or mass lumping can be used to diagonalize the matrix but in this dissertation

the non-lumped consistent mass matrices are used. The efficient solution of the system

is therefore critical. In this section the scaling properties of the mass matrix will be

analyzed, this research is presented in detail in [47].

The domain is a two-dimensional square, [0, 1]x[0, 1], structured mesh. The various

meshes used in this section are presented in Figure 4.15.

The meshes include orthogonal structured quadrilateral meshes and non-orthogonal

structured meshes that are perturbed through a random process. The perturbation

involves a recursive algorithm that decomposes a quadrilateral into four quadrilater-

als. Each of these quadrilaterals is in turn decomposed into four more quadrilaterals.

The midpoint of the quadrilateral is perturbed using a random number. This pertur-

bation is a function of the parameter f shown in (4.23).

xnew = sxnode i + (1− s)xnode j (4.23)

ynew = synode i + (1− s)ynode j

s = f + (1− 2f)rand(·)

This algorithm is applied to each edge of the quadrilateral defined by node i and

node j. The value rand(·) is a random number between 0 and 1. The four new

nodes are used to find the center of the quadrilateral being partitioned. Once the

center is found the four nodes are connected to the central node forming four new

sub quadrilaterals.

When f is 0.5, no perturbation occurs and the mesh is an orthogonal structured

mesh as shown in the top left corner of Figure 4.15. When the parameter f increases

the mesh becomes nonorthogonal as shown for various cases of f . The mesh size is a
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Grid size=H33,33L f=0.5 Grid size=H33,33L f=0.49

Grid size=H33,33L f=0.47 Grid size=H33,33L f=0.44

Grid size=H33,33L f=0.35

Figure 4.15: 2D Quadrilateral Meshes
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factor of 2 and is given by 2k−1 + 1x2k−1 + 1.

The two-dimensional edge basis functions will be used to characterize the mass

matrix solution for edge elements. These basis functions for a quadrilateral element

are given in Table 4.1. The mass and stiffness matrices for these 1-form basis functions

Table 4.1: Two dimensional edge basis functions for a Quadrilateral

Basis W

1 1
4
(1− ψ)

[

0
1

]

2 1
4
(1 + ψ)

[

1
0

]

3 1
4
(1− ξ)

[

0
1

]

4 1
4
(1 + ξ)

[

1
0

]

can be formed as in Chapter 3 resulting in the discrete electric field wave equation

(4.24). A four-point Gaussian quadrature rule was used for the inner product inte-

grations.

M1~̈e = −K1~e (4.24)

The mass matrix can be characterized by various metrics. For solution scaling the

most important of these is the condition number. The two-dimensional edge mass

matrix condition number for various meshes with n total edges are shown in Table

4.2.

Table 4.2: Condition number of 2D edge element mass matrix

n f = 0.5 f = 0.49 f = 0.47 f = 0.44 f = 0.35

144 3.92 3.86 4.41 5.27 10.31
544 3.97 3.92 4.95 6.76 20.28
2112 4.00 3.97 5.49 8.35 43.35
5320 4.00 3.99 6.15 10.69 86.18
33024 4.07 4.00 7.20 15.72 230.0
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The condition number for orthogonal meshes and slightly perturbed meshes is

constant, but as the perturbation grows the mass matrix becomes more ill-conditioned

as the size grows. In Table 4.3 the condition number of the Mass matrix under

diagonal preconditioning is improved over the non-preconditioned mass matrix.

Table 4.3: Condition number of 2D edge element diagonally preconditioned system

n f = 0.49 f = 0.47 f = 0.44 f = 0.35

40 3.00 3.15 3.33 4.08
144 3.00 3.18 3.43 4.43
544 3.00 3.28 3.64 5.58
2112 3.00 3.43 3.95 10.87
5320 3.00 3.63 4.30 16.28

The number of iterations necessary for the solution convergence for one time step

of (4.24) of the mesh with f = 0.44 are shown in Table 4.4. The preconditioners used

were Jacobi-diagonal scaling and incomplete-LU.

Table 4.4: Number of conjugate gradient iterations for f = 0.44

n Jacobi ILU

144 14 5
544 15 6
2112 16 6
33024 16 7

The condition number for the preconditioned system with f = 0.35 in Table

4.3 does not approach a constant as in the other cases. Unlike uniform grids the

fundamental structure of this non-uniform grid is not constant as the number of grid

points is increased. This is evident when mesh metrics such as the ratio of maximum

to minimum zone size, Table 4.5, and the ratio of maximum to minimum edge lengths,

Table 4.6, are compared for the different meshes.
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Table 4.5: Ratio of maximum to minimum zone area for various grid sizes

n f = 0.47 f = 0.44 f = 0.35

40 0.86 0.72 0.44
144 0.77 0.59 0.24
544 0.69 0.47 0.12
2112 0.62 0.37 0.07
5320 0.54 0.29 0.03
33024 0.48 0.23 0.01

Table 4.6: Ratio of maximum to minimum edge length for various grid sizes

n f = 0.47 f = 0.44 f = 0.35

40 0.856 0.733 0.441
144 0.796 0.626 0.293
544 0.719 0.509 0.172
2112 0.657 0.424 0.107
5320 0.597 0.351 0.069
33024 0.547 0.294 0.042

To determine if a result holds that is similar to the Ciarlet Theorem [40] for nodal

finite elements, the previous computations were carried out on a sequence of grids

whose diameters are related, Figure 4.16. Ciarlet’s theorem involves the nodal mass

matrix and states that if a sequence of meshes conforms to the criteria in Ciarlet’s

theorem, then the conjugate gradient method will attain a constant number of iter-

ations as the number of nodes is increased. The initial coarse grid was constructed

using a seed of f = 0.35. This grid is then partitioned to create a family of related

grids. The mesh metrics for this family of meshes are listed in Table 4.7,Table 4.8

and Table 4.9.

The condition number of the diagonally preconditioned edge mass matrix remains

essentially constant as the size of the grid increases provided the ratio of the edge

lengths remains constant. This is useful when the preconditioned conjugate gradient



123

Grid size=H9,9L f=0.35 Grid size=H17,17L f=0.35

Grid size=H33,33L f=0.35 Grid size=H65,65L f=0.35

Figure 4.16: 2D Quadrilateral Refinement Meshes

Table 4.7: Mesh Metrics for refined mesh sequence f = 0.35

m max(area)
min(area)

max(diam)
min(diam)

4 0.237794 0.293104
5 0.217542 0.293099
6 0.207517 0.293091
7 0.197316 0.293072
8 0.192447 0.293035
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Table 4.8: Condition number for mass matrix and diagonally preconditioned mass
matrix for refined mesh sequence f = 0.35

m κ(M1) κ(Q−1M1)

4 20.29 4.44
5 25.32 4.56
6 30.05 4.71
7 31.40 4.91
8 36.75 5.17

Table 4.9: Condition number for diagonally scaled conj. grad. and ILU conj. grad.
for refined mesh sequence f = 0.35

m Jacobi ILU

4 17 7
5 17 8
6 18 9
7 18 9
8 18 9

method is used for the system solution.
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Chapter 5

Numerical Method Analysis

The discrete differential forms method outlined in the previous chapter defines the

spatial discretization. In this chapter the time integration method and its convergence

along with numerical dispersion and conservation will be analyzed.

The time integration for the second order wave equation simulations in this dis-

sertation is a second order accurate leap frog method (5.1).

∂2x

∂t2
=
xn+1 − 2xn + xn−1

∆t2
+O(∆t2) (5.1)

The first order equations also use the second order accurate leap-frog time integration

(5.2).

∂x

∂t
=
xn+ 1

2 − xn− 1
2

∆t
+O(∆t2) (5.2)

This time integration approximation will converge to the true solution as δt→ 0 if it

meets the conditions of consistency and stability [48]. Consistency is a measure of how

well the finite difference equation (FDE) approximates the partial differential equation

(PDE). The FDE is consistent if as the mesh is refined the truncation error, the error

between the continuous PDE and the discrete FDE, goes to zero. The discrete wave
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equations with no loss terms can all be written in the form (5.3) where M is the mass

matrix which refines as ∆x and K is the stiffness matrix which refines as 1
∆x

. As

the mesh is refined both ∆x and ∆t grow smaller which gives lim∆x→0,∆t→0
∆t2

∆x2 = 0.

The time step ∆t ∝ ∆x therefore they grow smaller at approximately the same rate

resulting in a consistent method.

xn+1 = −∆t2M−1K + 2xn − xn−1 (5.3)

Convergence requires not only consistency but stability. Stability is a measure of error

growth as a time marching algorithm progresses. If the errors (round-off, truncation

error, bad design) do not grow in time the method is stable. Each wave equation will

be analyzed for stability in the sections below.

Dispersion is the effect in which waves at different frequencies will propagate at

different phase velocities. The phase velocity is defined as the ratio of the angular

frequency ω = 2πν to the wave number k = |~k| = 2π
λ

giving vp = ω
k

where ν and λ

are the frequency and wavelength of the wave. The quantity ~k is the wave vector,

this vector points in the direction of propagation. Dispersion can result in a narrow

Gaussian pulse spreading out due to the dissimilar propagation speeds of the Fourier

components. The phase velocity can also depend on the wave vector ~k, this results

in waves propagating at different velocities in different directions.

Numerical Dispersion [49], [50], [51] is the effect of dispersion due to a the discrete

nature of the simulation. In each wave equation section in this chapter a numerical

dispersion relation will be derived. In all cases it will be shown that the numerical

dispersion is accurate to second order. The derivation of the numerical dispersion

relation proceeds in the same way for all of the wave equations. The wave equation is
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written with no loss terms and constant coefficients and a scalar or vector plane wave

solution is assumed. The degrees of freedom on a hexahedral zone will differ by a

phase constant from a chosen set of degrees of freedom. These degrees of freedom are

then entered into the discrete form of the wave equation and solved for the dispersion

relation.

This chapter also includes the analysis of numerical conservation in the method.

The term numerical conservation describes the link between conserved mathemati-

cal representations and their corresponding physical representations. Just as energy,

charge and vorticity are conserved in nature so should they be in the method. The

following sections describe the mimetic nature of the method with respect to conser-

vation.

5.1 Scalar Wave Equation

To analyze the scalar wave equation the discrete representation will be written

with constant coefficients and without any loss terms in the natural (5.4) and adjoint

(5.5) forms.

M0ẍ = −K0x (5.4)

M3ẍ = −M3DM−1
2 DTM3x (5.5)

5.1.1 Numerical stability

The analysis of the stability for a three time level numerical algorithm proceeds

by rewriting the algorithm as a two level algorithm. This is accomplished by using
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an auxiliary variable. In the case of the scalar wave equation the result is shown in

(5.6).

xn+1 = 2I− (∆t)2M−1
0 K0x

n − zn

zn+1 = xn (5.6)

which becomes :










xn+1

zn+1











=











B −I

I 0





















xn

zn











(5.7)

where B = 2I− (∆t)2M−1
0 K0. Rewriting the equation in this way forms a simple

discrete representation given in (5.8)

un+1 = Qun (5.8)

where u is given by un =











xn+1

zn+1











. Determining the stability for this equation

depends on whether Q will amplify, attenuate or not affect the error. A necessary

criteria for stability is the two-norm of Q must be less than or equal to 1, ‖Q‖ ≤ 1.

The spectral radius ρ(Q), maximum absolute eigenvalue of Q, is related to ‖Q‖ by

(5.9). A necessary but not sufficient condition for stability is ρ(Q) ≤ 1.

ρ(Q) ≤ ‖Q‖ ≤ 1 (5.9)

Evaluating ρ(Q) leads to (5.10).

λ =
−δ ±

√
δ2 − 4

2
(5.10)

where δ is the maximum eigenvalue of B. Spectral stability is attained if λ ≤ 1,

solving for δ gives (5.11).

δ = −2 (5.11)



129

In (5.4) the matrix M0 is symmetric positive definite and K0 is symmetric positive

semi-definite. This leads to the result that for δ = 2−(∆t)2κ0, the eigenvalues κ0 ≥ 0

where κ0 are the eigenvalues represented in (5.12).

M0x = −κ0K0x (5.12)

Substituting the expression for δ into (5.10) we see the eigenvalues of Q will only

have unit magnitude given (5.13).

∆t ≤ 2
√

max(κ0)
(5.13)

The result in (5.13) is a necessary but not sufficient condition for stability. Three

types of stability can be defined. The first describes a system with eigenvalues all

within the unit circle and a complete set of linearly independant eigenvectors, called

strong stability. The second is called neutrally stable which describes a system with

eigenvalues on the unit circle and a complete set of linearly independant eigenvectors.

The third type is called weakly stable and describes a system with eigenvalues on

or within the unit circle and an incomplete set of linearly independant eigenvectors.

The eigenvectors of the amplification matrix Q must all be linearly independent for

stability with no growth. The case of the second order wave equation with Neumann

boundary conditions does not meet the criteria for stability with no growth. Stability

can also be defined as a solution that only grows polynomially not exponentially. The

second order wave equation grows, at worst, linearally in time. Linear growth results

due to a valid unphysical solution φ = ct, where c is a constant, of the second order

wave equation.

The growth of the amplification system can be bounded by looking at the eigen-
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vectors and eigenvalues of the matrix Q. If x is an eigenvector of the system (5.12),

then the amplification system becomes (5.14).

Q











x

z











= Q











x

1
λ
x











= λ











x

1
λ
x











(5.14)

If x is an eigenvector in the range of A = M−1
0 K0 then the amplification system

will oscillate but not grow. If the vector x is in the null space of A then the system

will have an eigenvalue λ = 1 with eigenvector (5.15) and will grow no faster than

linearly.










x

x











(5.15)

The linear growth can be shown by creating the Jordan form of the matrix Q =

V−1JV. The matrix J consists of Jordan blocks which are k-dimensional blocks with

the eigenvalues on the diagonal and ones on the super-diagonal. The size of the

Jordan blocks can be determined by solving the system (5.16).

(Q− λI)ku = 0 (5.16)

For the amplification system with eigenvector (5.15) the integer k = 2. This means

that there is no Jordan block greater than 2x2. The dimension of the Jordan block is

related to the norm of Q through the minimum polynomial of degree k. Since k can

be no larger than 2, the minimum polynomial for the system is of the form αx + β.

When the amplification matrix is applied many times the norm of Q will be related

to J through Qn = V−1JnV. Therefore the amplification system will grow no greater

than linearly.



131

To demonstrate the various solutions that may result and their growth, the eigen-

values and eigenvectors of the matrix Q resulting from a small hexahedral sphere grid

were computed. Table 5.1 contains the grid statistics for the hexahedral sphere. The

space dimensions for the natural Div-Grad operator are shown in Table 5.2.

Iterating un+1 = Qun for a valid static, valid dynamic and invalid solution results

in the figures shown along with the eigenvalue spectrum in Figure 5.1. The static

solution was created by using one of the null space eigenvectors, in this case the

constant vector. The dynamic solution was created by creating the rectangular matrix

of valid (non-zero) eigenvectors L and creating the projection matrix P = LLT . The

initial solution vector is then projected onto this space using the matrix P. The

invalid solution is created by adding random noise into the valid dynamic solution.

The invalid solution increases, at worst, linearly resulting in a weakly stable system.

It is important to note that the solution φ = ct is not a valid physical solution, but

is a valid solution of the P.D.E. The discretization is modelling the P.D.E. accurately

including the non-physical solution.

Table 5.1: Statistics for the hexahedral sphere grid.

Type Total Internal Boundary

zones 56
edges 202 154 48
faces 180 156 24
nodes 79 53 26

The adjoint form of the scalar wave equation has a stability condition similar to

(5.9). The matrix B is equal to (5.17).

B = 2I− (∆t)2M−1
3 M3DM−1

2 DTM3 (5.17)
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Table 5.2: Space dimensions for the natural Div-Grad operator test equations on a
hexahedral sphere grid.

Operator n 2n Distinct Eigenvalues Deg. Eigenvalues

Div-Grad 79 158 157 1
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Figure 5.1: Second order natural Div-Grad solutions
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In this case the eigenvalues κ3 come from the equation (5.18).

M3x = −κ3M3DM−1
2 DTM3x (5.18)

In this case both the mass matrix M3 and the stiffness matrix (5.19) are symmetric

positive definite so κ3 ≥ 0.

M3DM−1
2 DTM3 (5.19)

The stability condition becomes (5.20).

∆t ≤ 2
√

max(κ3)
(5.20)

In this case the operator is symmetric positive definite and therefore has linearly

independent eigenvectors meeting the criteria for stability.

Because the operator with essential boundary conditions corresponds to an op-

erator with no null-space the space dimensions show no degenerate eigenvalues for

the operator in Table 5.3. The eigenvalue spectrum, valid dynamic and “invalid”

solutions are shown in Figure 5.2.

Table 5.3: Space dimensions for the adjoint Div-Grad operator test equations on a
hexahedral sphere grid

Operator n 2n Distinct Eigenvalues Deg. Eigenvalues

Div-Grad 56 112 112 0

5.1.2 Numerical dispersion

The numerical dispersion relation for the natural form of the scalar wave equation

for pressure is derived by choosing a plane wave solution (5.21).

P1(~r, t) = P̃ ei(~k·~r−ωt) (5.21)
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Figure 5.2: Second order adjoint Div-Grad solutions
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The dispersion relation for the plane wave solution is given by (5.22)

ω2

k2
= c2l (5.22)

Due the the finite sampling of time and space in the simulation numerical dispersion

will result. This analysis will show that the order of accuracy due to errors introduced

by numerical dispersion is second order. The dispersion for the discrete pressure

scalar wave equation with constant coefficients (5.23) will be determined for a three

dimensional hexahedral region of space.

M0
∂2~β

∂t2
= −K0

~β (5.23)

The degrees of freedom ~β are the pressures located at the nodes and M0 and K0 are

the 0-form mass and stiffness matrices respectively presented previously. Referring to

the node numbering scheme in Figure 3.11, the first node n1 will be given a value of

α. All of the other nodes will differ from this value by a phase difference ~∆xi, where

i is the node number, and a time difference ∆t. The value of ~∆xi is the vector from

node n1 to node ni. The resulting nodal degrees of freedom are given in Table 5.4.

Table 5.4: Nodal Dispersion Degrees Of Freedom

DOF Function

β1 α

β2 αe−(~k· ~∆x2−ω∆t)

β3 αe−(~k· ~∆x3−ω∆t)

β4 αe−(~k· ~∆x4−ω∆t)

β5 αe−(~k· ~∆x5−ω∆t)

β6 αe−(~k· ~∆x6−ω∆t)

β7 αe−(~k· ~∆x7−ω∆t)

β8 αe−(~k· ~∆x8−ω∆t)

Entering the plane wave solution (5.21) into the time derivative and approximating
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using the second order time differentiation scheme (5.1) gives (5.24).

∂2βi

∂t2
≈ βn+1

i − 2βn
i + βn−1

i

∆t2
=

Ψβi

∆t2
(5.24)

Ψ =
2

∆t2
(cos(ω∆t)− 1) (5.25)

The degrees of freedom entered into (5.23) along with the time derivative approxi-

mation (5.24) gives the residual equation (5.26) where ν = c2l
∆t2

∆h2 . This equation is

derived through the variational equation. If the plane wave solution is a true solution

the residual will be zero. This equation can be solved for the single root R which will

be a relation between ω and ~k.

(ΨDm0 + νDk0)(α) = 0 (5.26)

The general solution for the root R Taylor expanded around δh = 0 is given in

(5.27).

Rte = k2 +O(∆h2) (5.27)

Choosing a wave vector on a uniform Cartesian grid ~k = ax̂ + bŷ + cẑ and Taylor

expanding the root about ∆h = 0.

Rte = k2(1 +
1

12
(k∆h)2 +O(∆h4)) (5.28)

The root R Taylor expanded around ∆t = 0 is given in (5.29).

Rte = ω2(1− 1

12
(ω∆t)2 +O(∆t4)) (5.29)

Combining the two Taylor expansions, the generalized dispersion relation for the 0-

form scalar wave equation is shown to be second order accurate (5.30).

ω2

k2
= c2l

(1 + 1
12

(k∆h)2 +O(∆h4))

(1− 1
12

(ω∆t)2 +O(∆t4))
(5.30)
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The adjoint form of the Laplacian for 3-forms can be analyzed in a similar manner

as the 0-forms above. The plane wave of the form (5.21) is again used, but in the

case the discrete operator equation is given by (5.31).

β = −DM−1
2 DTM3β (5.31)

The time and spatial domains are analyzed separately. The second order time deriva-

tive results in (5.24). This equation can be Taylor expanded in order to derive the

denominator of (5.30). The expansion is exactly the same for the 3-form due to the

same time integration method.

Using the operator stencil given by Figure 4.14 centered on the origin the sum in

(5.32) is performed.

φ =
n

∑

i

ce(−i~k·∆xi) (5.32)

This sum is then Taylor expanded in terms of the three components of the wave

vector ~k. The resulting relation will be the leading |~k|2 term followed by the spatial

dispersion truncation error. The result is shown in (5.33).

ω2

k2
= c2l

(1 + 1
12

(k∆h)2 +O(∆h4))

(1− 1
12

(ω∆t)2 +O(∆t4))
(5.33)

5.1.3 Energy conservation

The energy for the acoustic wave equation is given in (2.22). To show the conser-

vation of energy the integrodifferential form is used (5.34)

∮

Γ
P1~v · n̂dΓ +

∫

Ω
ρ0~v1 ·

∂~v1

∂t
+ (γP0)

−1P1
∂P1

∂t
= 0 (5.34)

The first term represents the energy flowing into the domain while the second and

third terms represent the time rate of change of the potential and kinetic energy
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respectively. Using the 0-form and 1-form mass matrices M0 and M1 for the pressure

term and velocity term respectively the discrete version of (5.34) can be derived and

is shown in (5.35). In this equation the energy flowing into the domain is set to be

zero. The 0-form and 1-form mass matrices have materials given by δ = (γP0)
−1 and

ν = ρ0 respectively.

αTMδ
0

∂α

∂t
+ βTMα

1

∂β

∂t
= 0 (5.35)

Using the leap frog integration scheme for the single time derivative equations (5.2) in

(5.35) the energy equation (5.36) can be shown to conserve energy in a time averaged

sense.

(αn+1)TMδ
0α

n+1 + (βn+ 1
2 )TMν

1β
n+ 1

2 + (αn)TMδ
0α

n + (βn− 1
2 )TMν

1β
n− 1

2 = 0 (5.36)

This result is derived through an analysis of the first order equations as done with the

second order equations in the stability section. The result of the first order stability

analysis is the same as the second order result (5.13). The amplification matrix for

the first order equations also has eigenvalues with unit magnitude. Using this fact

the energy equation is constant in time and therefore conserves energy.

The adjoint scalar wave equation energy analysis is performed in exactly the same

manner. Making the change to a 2-form, 3-form formulation results in the discrete

energy equation for the adjoint case (5.37).

(αn+1)TMδ
3α

n+1 + (βn+ 1
2 )TMν

2β
n+ 1

2 + (αn)TMδ
3α

n + (βn− 1
2 )TMν

2β
n− 1

2 = 0 (5.37)

This equation comes from the first order equations and can be shown to have unit

magnitude eigenvalues for the amplification matrix just as the 0-form, 1-form formu-

lation resulting in energy conservation.
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5.2 Electrodynamic Wave Equation

5.2.1 Numerical stability

The stability condition for the electrodynamic natural wave equation has the same

form as (5.13) with different eigenvalues κ∇×
1 . In this case the matrix B is equal to

(5.38) and the eigenvalues κ∇×
1 for the eigenvalue equation (5.39).

B = 2I− (∆t)2M−1
1 K1 (5.38)

M1x = −κ∇×
1 K1x (5.39)

The stability condition is given in (5.40)

∆t ≤ 2
√

max(κ∇×
1 )

(5.40)

As in the scalar wave equation the second-order electrodynamic wave equation is

only weakly stable. In this case stability cannot be improved by eliminating the null-

space of the operator. The space dimensions for the natural Curl-Curl operator are

shown in Table 5.5. The number of degenerate eigenvalues corresponds to the number

of independent scalar functions which is the number of nodes minus 1. The gradients

of these scalar functions form the null-space of the operator and the amplification

matrix. The equation admits solutions of the type t∇φ which is the non-physical

solution creating the linear growth. If the growth in error is on the order of machine

precision, then in practice the error will not be significant until millions of timesteps

have elapsed. The spectrum, static, dynamic and invalid solutions for this operator

are shown in Figure 5.3. The worst growth for this operator is linear growth for the

same reason as in the scalar numerical stability Section 5.1.



140

Table 5.5: Space dimensions for the natural Curl-Curl operator test equations on a
hexahedral sphere grid.

Operator n 2n Distinct Eigenvalues Deg. Eigenvalues

Curl-Curl 202 404 326 78
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Figure 5.3: Second order natural Curl-Curl solutions
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The adjoint electrodynamic equation has a B matrix given by B = 2I− (∆t)2CM−1
1 CTM2.

The eigenvalues in this case are κ∇×
2 from the (5.41).

x = −κ∇×
2 CM−1

1 CTM2x (5.41)

The stability condition is given in (5.42)

∆t ≤ 2
√

max(κ∇×
2 )

(5.42)

The adjoint Curl-Curl operator is formed using the 2-forms. The gradient associ-

ated with this operator is of 3-form scalar basis function. The null-space dimension

is then the number of zones in the mesh as shown in Table 5.6. The spectrum, static,

dynamic and invalid solutions are shown in Figure 5.4. The worst possible growth for

the second-order adjoint electrodynamic wave equation is linear for the same reason

as in Section 5.1.

Table 5.6: Space dimensions for the adjoint Curl-Curl operator test equations on a
hexahedral sphere grid

Operator n 2n Distinct Eigenvalues Deg. Eigenvalues

Curl-Curl 180 360 304 56

5.2.2 Numerical dispersion

The numerical dispersion for the second order electric wave equation is determined

by assuming a solution of the form (5.43).

~E(~r, t) = Ẽei(~k·~r−ωt) (5.43)
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Figure 5.4: Second order adjoint Curl-Curl solutions
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For the plane wave solution to the electric field wave equation the dispersion relation

is given by (5.44)

ω2

k2
= c2 (5.44)

where c is the speed of light. The 1-form natural form electric field wave equation

dispersion analysis proceeds in the same manner as the 0-form natural form scalar

wave equation dispersion analysis. The vector valued nature of the electric field gives

rise to three independent components X,Y, Z for the plane wave solution. The edge

degrees of freedom for the electric field on a single hexahedron element are given in

Table 5.7. The numbering for these edge degrees of freedom can be found in Figure

3.11. The values of the quantities ~∆x(i,j) correspond to the distance between the

Table 5.7: Edge Dispersion Degrees Of Freedom

Function Function Function

e1 X e5 Y e9 Z

e2 Xe−(~k· ~∆x(1,2)−ω∆t) e6 Y e−(~k· ~∆x(5,6)−ω∆t) e10 Ze−(~k· ~∆x(9,10)−ω∆t)

e3 Xe−(~k· ~∆x(1,3)−ω∆t) e7 Y e−(~k· ~∆x(5,7)−ω∆t) e11 Ze−(~k· ~∆x(9,11)−ω∆t)

e4 Xe−(~k· ~∆x(1,4)−ω∆t) e8 Y e−(~k· ~∆x(5,8)−ω∆t) e12 Ze−(~k· ~∆x(9,12)−ω∆t)

midpoint of edge i to the midpoint of edge j. Substituting the degrees of freedom

into the second order electric field equation in an infinite, source and conductivity

free region gives (5.45).

∂2ε ~E

∂t2
= −∇× µ−1∇ ~E (5.45)

The Galerkin form of this equation is given by (5.46).

M1

∂2~e

∂t2
= −K1~e (5.46)



144

The matrices M1 and K1 correspond to the 1-form mass and stiffness matrices re-

spectively and have been defined previously. Expanding the time derivative as in the

scalar wave equation gives (5.47).

∂2ei

∂t2
≈ en+1

i − 2en
i + en−1

i

∆t2
=

Ψei

∆t2
(5.47)

Ψ =
2

∆t2
(cos(ω∆t)− 1) (5.48)

Entering the degrees of freedom in Table 5.7 and the discrete time derivative term

from (5.47) yields a homogeneous system of equations with the three components of

the plane wave X,Y, Z as unknowns (5.49)

(ΨDm1 + νDk1)(α) = 0 (5.49)

The matrices Dm1 and Dk1 are non-linear functions of the wave vector ~k and the

mass M1 and stiffness K1 matrices respectively. The value of ν is given for the speed

of light c is given by ν = c2 ∆t2

∆h2 . The determinant of (5.49) gives three roots, one

zero and two nonzero roots corresponding to the two polarizations. The roots are

expanded around ∆h = 0 just as in the scalar wave equation dispersion analysis

resulting in the same equation as in the scalar case (5.27). For the specific case of a

uniform Cartesian grid ~k = ax̂+bŷ+cẑ and Taylor expanding the root about ∆h = 0

gives the equation for the anisotropic term (5.86).

Rte = k2(1 +
1

12
(k∆h)2 +O(∆h4)) (5.50)

The root R Taylor expanded around ∆t = 0 is the same as in the scalar case due to

the identical leap frog time stepping method used in both simulations (5.51).

Rte = ω2(1− 1

12
(ω∆t)2 +O(∆t4)) (5.51)
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Combining the two Taylor expansions, the generalized dispersion relation for the 1-

form electric wave equation is shown to be second order accurate (5.52).

ω2

k2
= c2

(1 + 1
12

(k∆h)2 +O(∆h4))

(1− 1
12

(ω∆t)2 +O(∆t4))
(5.52)

5.2.3 Magnetic charge conservation

One of the charge conservation laws for electrodynamics is the conservation of

magnetic charge (5.53).

∇ · ∂
~B

∂t
= 0 (5.53)

The inclusion relation between 1-forms and 2-forms can be used to rewrite Faraday’s

law resulting in conservation of (5.53). The curl of the 1-form basis functions ~W can

be written as a linear combination of the 2-form basis functions ~F this is illustrated

in Figure 5.5. The discrete electric field in a tetrahedron is given by (5.54).

Figure 5.5: Discrete Curl for Highlighted Edge in a Tetrahedron

~E =
6

∑

i

ei
~Wi (5.54)
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The time rate of change of the magnetic flux density becomes (5.55).

∂ ~B

∂t
= −

6
∑

i

ei∇× ~Wi = e1(~F2 − ~F1) + e2(~F1 − ~F3) + e3(~F3 − ~F2) (5.55)

+e4(~F4 − ~F1) + e5(~F2 − ~F4) + e6(~F4 − ~F3)

= ~F1(e2 − e1 − e4) + ~F2(e1 + e5 − e3) + ~F3(e3 − e2 − e6) + ~F4(e4 + e6 − e5)

Applying Gauss’s law to equation (5.55) shows that the degrees of freedom will sum

to zero (5.56).

∇ · ∂
~B

∂t
= 0 (5.56)

The magnetic charge constraint is satisfied exactly for the magnetic flux density

expanded in 2-forms. The type of element does not make a difference in the analysis

and therefore this result applies to any unstructured grid.

5.2.4 Electric charge conservation

The 1-form electric charge conservation is satisfied in the variational sense. This

can be shown by looking at the second order electric field equation in the frequency

domain (5.57) with boundary condition ~E × n̂ = 0 on Γ.

∇× µ−1∇× ~E − ω2ε ~E = 0 (5.57)

This equation admits two solution types, irrotational and solenoidal fields. The irro-

tational fields are characterized by an electric field that can be written as the gradient

of the scalar potential φ (5.58) giving ω = 0 for (5.57).

~Eir = −∇φ (5.58)
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For eigenvalues ω 6= 0 the electric field is solenoidal which can be seen by taking the

divergence of (5.57) resulting in (5.59).

∇ · ε ~Esol = 0 (5.59)

If the initial electric field and sources are divergence free then (5.59) will be true for

all time if and only if Curl-Curl operator is divergence free. The derivation of the

divergence free nature of the Curl-Curl operator follows. The permittivity may not

be continuous so it is best to look at (5.59) in variational form. Multiplying (5.59)

by the potential φ results in the variational form (5.60).

∫

Ω
ε ~Esol · ∇φ (5.60)

The discrete version of (5.57) can be constructed by using the matrices gener-

ated in Chapter 3 resulting in the discrete second-order electric field equation in the

frequency domain (5.61).

K
µ−1

1 ~e− ω2Mε
1~e = 0 (5.61)

The discrete 1-form space Wh ⊂ H0(curl) can written as the sum of the irrota-

tional fields space and the solenoidal fields space (5.62).

Wh =Wh
ir +Wh

sol (5.62)

This sum is referred to as the discrete Helmholtz decomposition of Wh. In this

decomposition the irrotational subspace is orthogonal to the solenoidal subspace

Wh
ir = (Wh

sol)
⊥. The irrotational and solenoidal subspaces are defined by (5.63)

and (5.64) respectively.

Wh
ir = {~v ∈ Wh;∇× ~v = 0} (5.63)
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Wh
sol = {~v ∈ Wh;∇ · ~v = 0} (5.64)

Using the discrete gradient operator listed in (3.63), the discrete version of (5.58) can

be constructed resulting in (5.65).

~eir = G~f ; ~eir ∈ V ; ~f ∈ F (5.65)

where F = {~f ∈ Rk; φ̃ ∈ N h, φ̃ ⇒ ~f}, N h ⊂ H0(grad) and V = {~eir inR
n, Ẽir ∈

Wh
ir, Ẽir ⇒ ~eir}. In these spaces the notation φ̃ ⇒ ~f denotes the construction of

~f given φ̃. The vectors ~eir form the null space of the stiffness matrix K
µ−1

1 (5.66).

The tildes on the variables indicate they are the discrete versions of the continuous

variables.

K
µ−1

1 G~f = 0 ∀ ~f (5.66)

This shows that there are k solutions of (5.61) with ω = 0, giving the static solutions

with nonzero divergence.

Choosing a solenoidal field vector ~esol from the space U = {~esol ∈ Rn; Ẽsol ∈

Wh
sol, Ẽsol ⇒ ~esol} defines the Rangespace of (5.61) giving (5.67).

K
µ−1

1 ~esol = ω2Mε
1~esol (5.67)

Multiplying this with an arbitrary irrotational ~eir ∈ V and using (5.66) gives (5.68).

~eT
irK

µ−1

1 ~esol = ~fTK
µ−1

1 GT~esol = ω2 ~fTGTMε
1~esol = 0 (5.68)

The discrete solenoidal solutions are orthogonal to the discrete irrotational solutions

through the inner product ~yTMε
1~x.

The conservation of electric charge is derived from (5.68) where (5.69) is the

discrete version of (5.60).

~fTGTMε
1~esol = 0 (5.69)
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The discrete solenoidal solutions ~esol satisfy the discrete divergence free condition in

the variational sense resulting in the conservation of electric charge.

5.2.5 Energy conservation

The energy for the electrodynamic wave equation is given in (2.30). To show the

conservation of energy the integrodifferential form is used (5.70)

∮

Γ
( ~E × ~H) · n̂dΓ +

∫

Ω
µ−1 ~B · ∂

~B

∂t
+

∫

Ω
ε ~E · ∂

~E

∂t
= 0 (5.70)

This equation represents the Poynting theorem for a domain free of conductivity. The

first term represents the energy flowing into the domain while the second and third

terms represent the time rate of change of the energy in the magnetic and electric

fields respectively. Using the 1-form and 2-form mass matrices M1 and M2 for the

electric field term and magnetic flux density term respectively the discrete version of

(5.70) can be derived and is shown in (5.71). In this equation the energy flowing into

the domain is set to be zero.

eTMε
1

∂e

∂t
+ bTM

µ−1

2

∂b

∂t
= 0 (5.71)

Using the leap frog integration scheme for the single time derivative equations (5.2) in

(5.71) the energy equation (5.72) can be shown to conserve energy in a time averaged

sense.

(en+1)TMε
1e

n+1 + (bn+ 1
2 )TM

µ−1

2 bn+ 1
2 + (en)TMε

1e
n + (bn−

1
2 )TM

µ−1

2 bn−
1
2 = 0 (5.72)

This result is derived through an analysis of the first order equations as done with the

second order equations in the stability section. The result of the first order stability
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analysis is the same as the second order result (5.40). The amplification matrix for

the first order equations also has eigenvalues with unit magnitude. Using this fact

the energy equation is constant in time and therefore conserves energy.

5.3 Linear Acoustic Vector Wave Equation

5.3.1 Numerical stability

The stability conditions for the acoustic wave equations have the same form as

the previous sections. The difference is only in the eigenvalues of the wave equations.

The natural acoustic have equation has eigenvalues κ∇·
2 from (5.73) and the matrix

B given by (5.74).

M2x = −κ∇·
2 K2x (5.73)

B = 2I− (∆t)2M−1
2 K2 (5.74)

The stability condition is given in (5.75)

∆t ≤ 2
√

max(κ∇·
2 )

(5.75)

The natural Grad-Div operator also has a large null-space that cannot be elimi-

nated. This leads to a number of degenerate eigenvalues of the amplification matrix.

In this case the degenerate eigenvalues correspond to vector functions with nonzero

curls. The equation admits a solution of the type t∇× ~Ψ. The non-physical solution

in this case is t∇ × ~Ψ. The dimension of the null space results from the internal

1-form degrees of freedom minus the gradients of scalar functions plus the boundary

face degrees of freedom. The dimensions for the amplification matrix are shown in
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Table 5.8. The eigenvalue spectrum, static, dynamic and invalid solutions are shown

in Figure 5.6. The worst possible growth for this operator are the same as in all of

the other operators, linear growth, for the same reason as in Section 5.1.

Table 5.8: Space dimensions for the natural Grad-Div operator test equations on a
hexahedral sphere grid.

Operator n 2n Distinct Eigenvalues Deg. Eigenvalues

Grad-Div 180 360 236 124
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Figure 5.6: Second order natural Grad-Div solutions

The adjoint acoustic wave equation has eigenvalues κ∇·
1 from (5.76) and the matrix

B given by (5.77)

x = −κ∇·
1 GM−1

0 GTM1x (5.76)

B = 2I− (∆t)2GM−1
0 GTM1 (5.77)



152

The stability condition is given in (5.78)

∆t ≤ 2
√

max(κ∇·
1 )

(5.78)

The space dimensions shown in Table 5.9 show the same number of degenerate

eigenvalues. This is due to the dual nature of the curl operator. The curl of a 1-form is

a 2-form and vice versa. The eigenvalue spectrum for the adjoint Grad-Div operator,

static, dynamic and invalid solutions are shown in Figure 5.7. The worst growth for

this operator is linear growth for the same reason as in Section 5.1.

Table 5.9: Space dimensions for the adjoint Grad-Div operator test equations on a
hexahedral sphere grid

Operator n 2n Distinct Eigenvalues Deg. Eigenvalues

Grad-Div 202 404 280 124

5.3.2 Numerical dispersion

The numerical dispersion for the second order velocity wave equation is determined

by assuming a solution of the form (5.79).

~v(~r, t) = ṽei(~k·~r−ωt) (5.79)

For the plane wave solution to the velocity field wave equation the dispersion relation

is given by (5.80)

ω2

k2
= c2l (5.80)

where cl is the speed of sound as in the scalar wave equation. The 2-form natural

form electric field wave equation dispersion analysis proceeds in the same manner as

the 1-form natural electric field wave equation dispersion analysis. The vector valued
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Figure 5.7: Second order adjoint Grad-Div solutions



154

nature of the electric field again gives rise to three independent components X,Y, Z

for the plane wave solution. The face degrees of freedom for the velocity field on

a single hexahedron element are given in Table 5.10. The numbering for these face

degrees of freedom can be found in Figure 3.11.

Table 5.10: Face Dispersion Degrees Of Freedom

Function Function Function

f1 X f3 Y f5 Z

f2 Xe−(~k· ~∆x(1,2)−ω∆t) f4 Y e−(~k· ~∆x(3,4)−ω∆t) f6 Ze−(~k· ~∆x(5,6)−ω∆t)

The values of the quantities ~∆x(i,j) correspond to the distance between the face

centroid of face i to the face centroid of face j. Substituting the degrees of freedom

into the second order velocity field equation in an infinite, source free region gives

(5.81).

∂2~v

∂t2
= c2l∇∇ · ~v (5.81)

The Galerkin form of this equation is given by (5.82).

M2

∂2~α

∂t2
= −K2~α (5.82)

The matrices M2 and K2 correspond to the 2-form mass and stiffness matrices re-

spectively and have been defined previously. Expanding the time derivative as in the

scalar and electric field wave equations gives (5.83).

∂2αi

∂t2
≈ αn+1

i − 2αn
i + αn−1

i

∆t2
=

Ψαi

∆t2
(5.83)

Ψ =
2

∆t2
(cos(ω∆t)− 1) (5.84)

Entering the degrees of freedom in Table 5.10 and the discrete time derivative term

from (5.83) yields a homogeneous system of equations with the three components of
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the plane wave X,Y, Z as unknowns (5.85)

(
2Ψ

∆t2
Dm2 + νDk2) = 0 (5.85)

The matrices Dm2 and Dk2 are non-linear functions of the wave vector ~k and the

mass M2 and stiffness K1 matrices respectively. The value of ν is the same as in the

scalar dispersion analysis ν = c2l
∆t2

∆h2 . The roots are expanded around ∆h = 0 just as

in the scalar wave equation dispersion analysis resulting in the same equation as in the

scalar case (5.27). For the specific case of a uniform Cartesian grid ~k = ax̂+ bŷ + cẑ

and Taylor expanding the root about ∆h = 0 gives the equation for the anisotropic

term (5.86).

Rte = k2(1 +
1

12
(k∆h)2 +O(∆h4)) (5.86)

The root R Taylor expanded around ∆t = 0 is the same as in the scalar case due to

the identical leap frog time stepping method used in both simulations (5.87).

Rte = ω2(1− 1

12
(ω∆t)2 +O(∆t4)) (5.87)

Combining the two Taylor expansions, the generalized dispersion relation for the 2-

form electric wave equation is shown to be second order accurate (5.88).

ω2

k2
= c2l

(1 + 1
12

(k∆h)2 +O(∆h4))

(1− 1
12

(ω∆t)2 +O(∆t4))
(5.88)

5.3.3 Vorticity conservation 1-forms

The vector acoustic wave equations are solved with vorticity set to zero (5.89).

∇× ~v = 0 (5.89)
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This constraint is automatically maintained for the natural 2-form formulation and

the adjoint 1-form formulation.

Beginning with the 1-form formulation it will be shown that the vorticity con-

straint is satisfied exactly. The vorticity must be satisfied in space and time, this

results in the vorticity equation becoming (5.90).

∇× ∂~v

∂t
= 0 (5.90)

The inclusion relation between 1-forms and 0-forms can be used to rewrite the first

order velocity equation (2.3). The gradients of the nodal basis functions N can be

written as a linear combination of the edge basis functionsW , as illustrated in Figure

5.8. The pressure in a tetrahedron is given by (5.91).

��

Figure 5.8: Discrete Gradient for Highlighted Node in a Tetrahedron

P =
4

∑

i

βiNi (5.91)

The time rate of change of the velocity with ρ0 = 1, which is constant throughout

the element, becomes (5.92).

∂~v

∂t
= −

4
∑

i

βi∇Ni = β1( ~W1 + ~W2 + ~W3) + β2( ~W4 + ~W5 − ~W1) + (5.92)

β3( ~W6 − ~W2 − ~W4) + β4(− ~W3 − ~W5 − ~W6)
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= ~W1(β1 − β2) + ~W2(β1 − β3) + ~W3(β1 − β4) +

~W4(β2 − β3) + ~W5(β2 − β4) + ~W6(β3 − β4)

Applying Stoke’s theorem to equation (5.92) shows that the degrees of freedom will

sum to zero (5.93).

∇× ∂~v

∂t
= (β1 − β2){0,−2, 2}+ (β1 − β3){2, 0,−2}+ (β1 − β4){−2, 2, 0}+ (5.93)

(β2 − β3){0, 0, 2}+ (β2 − β4){0,−2, 0}+ (β3 − β4){2, 0, 0} = 0

The vorticity constraint is satisfied exactly for the 1-form velocity wave equation. The

type of element does not make a difference in the analysis and therefore this result

applies to any unstructured grid.

5.3.4 Vorticity conservation 2-forms

The 2-form vorticity constraint is satisfied in the variational sense similar to the 1-

form electric charge conservation. Beginning with the second-order velocity equation

in the frequency domain (5.94) with boundary condition ~v · n̂ = 0 on Γ, two types of

solutions are admitted, solenoidal and irrotational.

∇c2l∇ · ~v + ω2~v = 0 (5.94)

For ω = 0 the solution is a solenoidal field which can be characterized by the curl of

a scalar potential ~A shown in (5.95).

∇ · ~v = 0 ; ~v = ∇× ~A (5.95)

The solutions for ω 6= 0 are irrotational fields (5.96) derived by taking the curl of

(5.94).

∇× ~v = 0 (5.96)
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If the velocity and sources are curl free initially then (5.96) will be true for all time if

and only if the Grad-Div operator is curl free. The derivation of the curl free nature

of the Grad-Div operator follows. Looking at the irrotational term in the variational

sense gives (5.97) due to potential discontinuities in the sound speed cl.

∫

Ω
~v · ∇ × ~A = 0 (5.97)

A discrete version of (5.94) is constructed with the use of the matrices defined in

Chapter 3 giving the discrete second-order velocity wave equation in the frequency

domain (5.98).

K
c2
l

2 ~v − ω2M2~v = 0 (5.98)

The discrete 2-form space Fh ⊂ H0(div) can be decomposed into irrotational and

solenoidal subspaces (5.99).

Fh = Fh
ir + Fh

sol (5.99)

This is the Helmholtz decomposition of Fh where Fh
ir = (Fh

sol)
⊥ which are defined in

(5.100) and (5.101).

Fh
ir = {~v ∈ Fh;∇× ~v = 0} (5.100)

Fh
sol = {~v ∈ Fh;∇ · ~v = 0} (5.101)

Using a differential forms argument, the natural description of the vector potential ~A

is a 1-form variable. This leads to the discrete version of (5.95) giving (5.102).

~vsol = C~a ; ~vsol ∈ V and ~a ∈ A (5.102)

where V = {~vsol ∈ Rn, ṽ ∈ Fh
sol, ṽ ⇒ ~vsol} and A = {~a ∈ Rk, Ã ∈ Wh, Ã⇒ ~a} and ⇒

is defined as in Section 5.2.4.
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The solenoidal velocity vectors ~vsol ∈ V form the null space of the stiffness matrix

K
c2
l

2 shown in (5.103).

K
c2
l

2 C~a = 0 ∀ ~a (5.103)

Choosing an irrotational velocity ~vir from the space U = {~vir ∈ Rn, ṽ ∈ Wh
ir, ṽ ⇒

~vir} and substituting these solutions into (5.98) results in the equation (5.104).

K
c2
l

2 ~vir = ω2M2~vir (5.104)

Multiplying (5.104) by an arbitrary solenoidal velocity vector and using (5.103) results

in (5.105).

~vT
solK

c2
l

2 ~vir = ~aTCK
c2
l

2 ~vir = ω2~aTCM2~vir = 0 (5.105)

The discrete solenoidal solutions are orthogonal to the discrete irrotational solutions

through the inner product ~yTM2~x.

The conservation of vorticity is derived from (5.105) where (5.106) is the discrete

version of (5.97).

~aTCTM2~vir = 0 (5.106)

The discrete irrotational solutions ~Vir satisfy the discrete curl free condition in the

variational sense resulting in the conservation of vorticity.

5.3.5 Energy conservation

The energy for the vector acoustic wave equation is given in (2.22). The vector

acoustic wave equation has the same form for the first order equations as the scalar

wave equation above. The energy conservation is therefore the same as shown in
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the scalar wave equation section above. Both the 0-form-1-form and 2-form-3-form

formulations conserve energy in a time averaged sense.

5.4 Linear Elastic Wave Equation

5.4.1 Numerical stability

The stability condition for the linear elastic wave equation combines the natural

and adjoint operators for each form. The stability condition is still calculated in the

same manner. The B matrix for the 1-form linear elastic equation is given by (5.107).

B = 2I− (∆t)2[K1 + GM−1
0 GTM1] (5.107)

The stability condition is given in (5.108)

∆t ≤ 2
√

[max(κ∇×
1 ) +max(κ∇·

1 )]
(5.108)

The B matrix for the 2− form linear elastic equation is given by (5.109).

B = 2I− (∆t)2[K2 + CM−1
1 CTM2] (5.109)

The stability condition is given in (5.110)

∆t ≤ 2
√

[max(κ∇×
2 ) +max(κ∇·

2 )]
(5.110)

5.4.2 Numerical dispersion

The numerical dispersion for the linear elastic wave equations can be determined

by combining the three terms of the vector Laplacian operator shown for the 1-form

in Figure 4.10 and for the 2-form in Figure 4.13. It is apparent from these diagrams
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that the three terms of the Laplacian for both p-forms are decoupled. The operators

can therefore be combined into one larger stencil that represents the full Laplacian.

The dispersion is determined by evaluating each operator comprising the vector

Laplacian operator separately. The coefficients of the stencil for each operator are

combined in the plane wave solution (5.111) and evaluated at the edge or face centers.

~u = ũei(~k·∆~x−ω∆t) (5.111)

Because all three components of the vector operator are independent, in terms of

degrees of freedom, from each other, they can be evaluated separately. The stencil

for each component is the standard six point stencil and can be evaluated as in the

3-form dispersion section. Assuming the longitudinal and transverse wave speeds are

the same, the result is identical to the 3−form result and is given in (5.112).

ω2

k2
= c2l

(1 + 1
12

(k∆h)2 +O(∆h4))

(1− 1
12

(ω∆t)2 +O(∆t4))
(5.112)

5.5 Linear Magnetohydrodynamic Wave Equation

5.5.1 Numerical stability

The numerical stability for the magnetohydrodynamic wave equation is a combi-

nation of the stability for the acoustic term in the equation and the transverse wave

term. The acoustic term has been analyzed previously in the Acoustic Vector Wave

Equation section. The transverse wave term will be analyzed in this section.

The discrete form for the MHD term is given in (5.113) with eigenvalues κMHD
2 .

M2~x = κMHD
2 MT

×CTM2CM×~x (5.113)
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The matrix B for this term becomes (5.114).

B = 2I−∆t2M−1
2 M2M

T
×CTM2CM× (5.114)

A simulation with sound speed cl set to zero will be stable if the timestep has the

property (5.115).

∆t ≤ 2

max(κMHD
2 )

(5.115)

Combining this with the acoustic term eigenvalue the stability condition for the

linear magnetohydrodynamics simulations is (5.116).

∆t ≤ 2
√

[max(κMHD
2 ) +max(κ∇·

2 )]
(5.116)

5.5.2 Numerical dispersion

The numerical dispersion for the acoustic term was derived in section for the

acoustic vector wave equation. In this section the dispersion for the transverse wave

term will be analyzed. Assuming a velocity in the x-direction on a two-dimensional

uniform Cartesian mesh the MHD term stencil looks like Figure 5.9.
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Figure 5.9: 2 Dimensional MHD term Stencil

This stencil can be used to determine the dispersion by assuming a plane wave of
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the type (5.117).

~v = ṽei(~k·∆~x−ω∆t) (5.117)

The coefficients and positions for the two-dimensional MHD term stencil are en-

tered into the plane wave solution and expanded in a Taylor series about the wave

vector ~k = kx∆xî+ ky∆yĵ where the ∆x and ∆y terms are the phase difference form

the central face. In two-dimensions the central face is an edge as shown in the stencil.

In the magnetohydrodynamic simulations a uniform magnetic flux density ~B0

is applied in the y-direction. This causes an asymmetry in the dispersion. The

dispersion for the MHD term is listed in (5.118). The denominator comes from

the analyses for the leap-frog time integration scheme and is identical to previous

dispersion analyses.

ω2

|~k|2
= |~va

2|(1 + 1
3
(kx∆x)

2 + 1
12

(ky∆y)
2 +O(∆h4))

(1− 1
12

(ω∆t)2 +O(∆t4))
(5.118)

5.5.3 Energy conservation

Energy conservation for the magnetohydrodynamic equation involves three vari-

ables pressure, velocity and magnetic flux density. The energy equation given in

(2.50) can be written in discrete form using 2-forms for the velocity and magnetic

flux density and 3-forms for the pressure. The discrete magnetohydrodynamic energy

equation for a domain with no energy entering is given in (5.119)

αTMδ
3

∂α

∂t
+ βTMα

2

∂β

∂t
+ bTM

µ−1

2

∂b

∂t
= 0 (5.119)

The equations listed in (2.48) show the pressure and magnetic flux density are cou-

pled to the velocity while the velocity is coupled to both the density and magnetic
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flux density. The pressure and magnetic flux density can therefore be integrated at

half timesteps and the velocity integrated at whole time steps using the leap frog

integration scheme in (5.2). The energy conservation equation for the linear magne-

tohydrodynamics equations is given in (5.120), the material δ and ν are defined as in

the acoustic energy conservation.

(αn+1)TMδ
3α

n+1 + (βn+ 1
2 )TMν

2β
n+ 1

2 + (bn+1)TM
µ−1

2 bn+1 + (5.120)

(αn)TMδ
3α

n + (βn− 1
2 )TMν

2β
n− 1

2 + (bn)TM
µ−1

2 bn = 0

The energy is conserved as in all of the other cases in this Chapter.
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Chapter 6

Parallel Implementation

The efficient solution of large scale simulations is the domain of massively parallel

computing. The simulations presented in this dissertation range from simulation runs

on a single processor to simulations that require hundreds of processors to run. Many

computer architectures have been developed to enable these simulations. The four

types of architectures are SISD (single instruction single data), SIMD (single instruc-

tion multiple data), MISD (multiple instruction single data), and MIMD (multiple

instruction multiple data) [52]. The MIMD architecture comprises the majority of the

slots in the top500 list of supercomputers [53]. These computers are typically several

processors sharing memory on a single node that is then networked with many other

nodes using fast network interface cards and network switches.

The instruction part of the architecture in the case of this dissertation is the com-

putational model known as SAMD (single algorithm multiple data). Each processor

runs the same algorithm using different data sets.

If the program running in parallel is not embarrassingly parallel, that is all data
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is not confined to the local processor, then data must be transferred to the other pro-

cessors. The data is transfered to the other processors using MPI (message passing

interface) [54]. Data is collected then sent to another or all other processors. The

receiving processor will then receive the data and incorporate it into its own calcu-

lations. The message passing requires time and computation introducing overhead

that limits the speedup of a simulation. The relative speedup Sp of a simulation is

defined as the ratio of the execution time on a single processor T1 divided by the

execution time on p processors Tp; Sp = T1

Tp
. Many other metrics for characterizing

parallel implementations exist but this dissertation will use the above metrics.

6.1 Parallel Toolkits

Once the architecture and communication implementation are chosen, a parallel

simulation code must be written. Gone are the days of hand crafting a linear solver

to a given computer architecture. Several linear and non-linear solver packages are

available, also called parallel toolkits for the large auxiliary functionality they provide.

The toolkit used in this dissertation is PETSc, the portable extensible toolkit for

scientific computing [27] [28] [26]. Another toolkit called Hypre [55] is a collection

of scalable sparse linear system solvers. PETSC can use the Hypre toolkit code as

both main solver and preconditioner, effectively combining the two toolkits. These

toolkits build on MPI to define a higher level of abstraction. The communication is

implemented for the user. The user then specifies sequential or parallel matrices and

vectors that are partitioned automatically for the number of processors. Figure 6.1

shows a typical partitioning for four processors.
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Processor 1

Processor 2

Processor 3

Processor 4

Figure 6.1: Matrix Partitioning

The different shades in the matrix partitioning show the parts of the matrix,

solution vector and right hand side owned by each processor.

Both PETSc and Hypre implement many iterative solution methods. This dis-

sertation uses the preconditioned conjugate gradient method discussed in Chapter

4. The version used in PETSc is parallel utilizing a partitioning as in Figure 6.1 to

provide the parallel matrix vector multiplies needed for the algorithm.

6.2 Python

The interpreted computer language Python is part of the parallel implementation

due to its utility. The language itself provides no parallel facility, but it is included in

this chapter due to its simplicity of design and its ability to run c++ code. Python

allows a programmer to write what is often referred to as functional pseudo-code.

That is, code that can be easily understood due to its simple structure.
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In parallel the Python interpreter is run on every processor. Due to its inter-

preted nature the Python script runs slower than a typical compiled C or C++

executable. This can be remedied by extending Python with C/C++ code. This

process of extension allows the Python interpretor to run the C/C++ code as if it

were Python code at native C/C++ speed. Several methods for extending Python

such as Boost/Python [56] or SWIG [57] make the process relatively painless. The

PETSC and Hypre toolkits mentioned above have both been compiled into Python

modules. This provides a massively parallel interpreted linear solver system in some

ways much like a massively parallel Matlab.

6.3 Mesh Generation and Domain Decomposition

The discrete differential forms framework is a finite element based method. The

finite element method requires a mesh on which to define the basis functions. To

implement an efficient finite element method in parallel, the domain of the prob-

lem is decomposed into smaller domains. Typically the number of sub-domains the

domain is decomposed into is the same as the number of processors. Each proces-

sor receives its own domain, which speeds up the matrix generation, a significant

amount of computation. Several methods are employed to decompose the domain.

The method used in this dissertation is the k-way decomposition implemented in the

METIS/ParMETIS code [58], [59], [60].

This method takes the full mesh like the mesh shown in Figure 6.2 and attempts

to group edges and nodes to make a courser mesh. This algorithm is repeated until

a very coarse mesh is created. This coarsest mesh can be partitioned easily. The
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algorithm is repeated until each of the child partitions are themselves partitioned

into the requested number of partitions. The cylinder mesh shown in Figure 6.2 was

partitioned using this algorithm into four partitions shown in Figure 6.3.

Figure 6.2: Cylinder Mesh
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Figure 6.3: Cylinder Mesh Domain Decomposition



171

Chapter 7

Validation

In this section validation simulations for the various wave equations are presented.

The finite element method allows unstructured grids with arbitrary element shapes.

To demonstrate this feature, various meshes with hexahedral, tetrahedral and prism

elements are used in the simulations. While the framework has been validated for the

electrodynamics equations [22], the acoustics, elasticity and magnetohydrodynamics

equations are untested. Therefore simulations in the frequency domain for small

square and cubic grids will be analyzed to characterize the equations. Eigenvalue

calculations in the time domain for larger unstructured domains will be presented to

determine the accuracy of the framework. The dispersion relations given in Chapter

5 have shown the method is second order accurate. These simulations will confirm

this accuracy.
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7.1 Common simulation meshes

This section contains some of the common meshes used in the simulations in the

following sections. The two types of meshes common to the scalar and vector wave

equation and the electrodynamics equations cavity simulations are the rectangular

cavity and the spherical cavity. These meshes will be discretized using tetrahedrons

and hexahedrons. Various meshes for the different simulations will be presented in

the section in which they are introduced.

The rectangular mesh is a 29mx25mx21m rectangular region which is discretized

using hexahedrons. The hexahedral mesh is constructed using a commercial grid

generation package called Truegrid [61]. [62]. The mesh statistics for each mesh are

listed in Table 7.1.

Table 7.1: Rectangular Cavity Meshes

Mesh Type Tetrahedral Prism Hexahedral

Nodes 1331 1364 1331
Edges 7930 4947 3630
Faces 12600 5724 3300

Elements 6000 2140 1000

An unstructured spherical mesh is used for mesh refinement studies in all of the

forms. A set of uniformly refined hexahedral meshes, Table 7.2, was constructed using

Truegrid.

These spherical meshes all have a radius of r = 0.05855 m. As stated in Chapter

3 the requirement for uniform refinement is the bound of the maximum and mini-

mum angles in the mesh as h → 0. The factor h
a

is a related parameter in each of

the mesh series. The tetrahedral meshes are directly constructed from the series of
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Table 7.2: Spherical Cavity Hexahedral Refinement Meshes

h

a

1
4

1
6

1
8

1
10

Nodes 321 997 2273 4341
Edges 880 2832 6560 12640
Faces 816 2700 6336 12300

Elements 256 864 2048 4000

hexahedral meshes. The series of tetrahedral meshes, Table 7.3, were constructed

using each corresponding hexahedral grids’ nodes with GEOMPACK [63] calculating

the connectivity.

Table 7.3: Spherical Cavity Tetrahedral Refinement Meshes

h

a

1
4

1
6

1
8

1
10

Nodes 321 997 2273 4431
Edges 1952 6396 14944 28940
Faces 3168 10584 24960 48600

Elements 1536 5184 12288 24000

A set of cylindrical meshes is used to test operator conformance. These meshes

have radii of a = 2.23456m and lengths of L = 1.9m. The number of nodes, edges,

faces and elements is shown in Table 7.4.

Table 7.4: Cylindrical Cavity Meshes

Mesh Type Tetrahedral Prism Hexahedral

Nodes 890 873 890
Edges 5534 3080 2481
Faces 8986 3488 2312

Elements 4341 1280 720
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7.2 Operator conformance

In the previous chapters discrete operators for vector identities as well as discrete

stiffness matrices were introduced. These operators can be used to verify the accuracy

of the finite element method and the correctness of the grid. The tables below are

generated for the rectangular grids shown in Table 7.1 and the cylindrical grids shown

in Table 7.4.

To test the vector identities listed in (2.78), the discrete versions are formed for

the natural Curl-Grad and Div-Curl operators (7.1) and the adjoint Curl-Grad and

Div-Curl (7.2) operators.

CG = 0

DC = 0 (7.1)

C̃G̃ = 0

D̃C̃ = 0 (7.2)

The natural operators will be zero independent of element type, grid structure or grid

distortion. Because the adjoint operators involve a matrix inversion, these identities

will only be zero in an approximate sense depending on the accuracy of the solution.

The absolute error for the natural and adjoint operators for the rectangular grid are

shown in Table 7.5 and for the cylindrical grid in Table 7.6.

In Chapter 3 it was shown that the stiffness matrices can be constructed using

either the second order wave equation or combining the first order wave equations

in the scalar wave equation, electrodynamics and vector acoustic wave equation sec-

tions. The results for the absolute difference between the two stiffness matrix creation
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Table 7.5: Rectangular Mesh Vector Operator Conformance

Operator Discrete Form Tetrahedral Prism Hexahedral

∇×∇ CG = 0 0.0 0.0 0.0
∇×∇ M−1

1 CTDTM3 = 0 8.861474e-15 4533739e-16 2.793370e-16
∇ · ∇× DC = 0 0.0 0.0 0.0
∇ · ∇× M−1

0 GTCTM2 = 0 2.652972e-15 1.886097e-15 1.817464e-15

Table 7.6: Cylindrical Mesh Vector Operator Conformance

Mesh Type Discrete Form Tetrahedral Prism Hexahedral

∇×∇ CG = 0 0.0 0.0 0.0
∇×∇ M−1

1 CTDTM3 = 0 1.433930e-10 2.024319e-11 5.326277-12
∇ · ∇× DC = 0 0.0 0.0 0.0
∇ · ∇× M−1

0 GTCTM2 = 0 4.648776e-11 7.612939e-11 3.053943e-11

methods are shown in (7.3).

K0 ≡ GTM1G

K1 ≡ CTM2C

K2 ≡ DTM3D (7.3)

The comparison of the two methods for the stiffness matrix creation are shown for

the rectangular grid in Table 7.7 and the cylindrical grid in Table 7.8.

Table 7.7: Rectangular Mesh Stiffness Matrix Conformance

Operator Discrete Form Tetrahedral Prism Hexahedral

∇ · ∇ GTM1G−K0 = 0 4.119507e-16 3.618687-16 3.638330-16
∇×∇× CTM2C−K1 = 0 3.468225e-16 1.072193e-16 4.665859-16
∇∇· DTM3D−K2 = 0 3.758319e-16 2.155468e-16 2.099643-16

All of the comparisons are zero to machine precision showing the two methods for

constructing the stiffness matrices are identical. If a grid is improperly constructed

then one or more of the above tests will fail. These tests provide a necessary but
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Table 7.8: Cylindrical Mesh Stiffness Matrix Conformance

Operator Discrete Form Tetrahedral Prism Hexahedral

∇ · ∇ GTM1G−K0 = 0 3.780916e-16 3.808475e-16 3.770671e-16
∇×∇× CTM2C−K1 = 0 3.008296-16 3.220813e-16 3.914080e-16
∇∇· DTM3D−K2 = 0 4.323948e-16 2.005644e-16 2.200214e-16

not sufficient condition for proper construction of the discrete differential forms finite

element system. To prove the system is accurate, eigenvalue calculations for the

various wave equations are performed below.

7.3 Scalar Wave Equation

The scalar wave equation is typically solved using 0-forms or nodal finite elements.

Raviart and Thomas proposed an alternative formulation using a mixed finite element

method comprised of 2-forms and 3-forms in two dimensions. Both of these formula-

tions will be used to solve a linear acoustic scalar wave equation for the second order

pressure and density wave equations.

7.3.1 Space characterization

One of the requirements for a discrete differential form is a discrete space that are

subspaces of the corresponding Hilbert spaces. In this section the discrete subspaces

for H(grad) and L2 will be examined for the 0-form and 3-form respectively.

The discrete scalar wave equation with wave speed cl = 1 in the frequency domain

is shown in (7.4)

∇ · (∇ψ) = ω2ψ (7.4)
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where ψ represents the pressure or density and ω2 = k2 is the angular frequency

eigenvalue. The domain of the problem is a unit cube with dimensions a × b × c =

1m× 1m× 1m discretized using a 9x9x9 zone hexahedral grid with 1000 nodes and

729 elements. The eigenvalues are given by (7.5).

ω2
mnl = c2l π

2(
m2

a2
+
n2

b2
+
l2

c2
) (7.5)

The specific values of m,n, l depend on the boundary conditions imposed on the

domain.

For the first experiment the eigenvalues will be compared for the homogeneous

essential boundary conditions of the 0-form Div-Grad operator and the homogeneous

natural boundary conditions of the 3-form Div-Grad equation(7.6).

∇ · (∇ψ0) = ω2
0ψ0 with ψ0 = 0 on Γ

∇ · (∇ψ3) = ω2
3ψ3 with ψ3 = 0 on Γ (7.6)

In this case the values for the coefficients m,n, l are given in (7.7) with corresponding

0-form ψ0 and 3-form ψ3 eigenvectors given in (7.8).

m = 1, 2, 3, 4...

n = 1, 2, 3, 4...

l = 1, 2, 3, 4... (7.7)

ψ0 = ψ3 = Am,n,l sin(
mπ

a
) sin(

nπ

a
) sin(

lπ

a
) (7.8)

The five smallest eigenvalues are listed in Table 7.9. In the case of the 0-form the

essential boundary conditions are used, while in the case of the 3-form the natural

boundary conditions are applied resulting in the same boundary condition.
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Table 7.9: Div-Grad Eigenvalues with Dirichlet Boundary Conditions

mode ω2 true ω2
0 % error ω2

3 % error

1 29.608813 29.910665 1.019465 29.910664 1.019461
2 59.217626 61.046938 3.089133 61.046943 3.089142
3 88.826440 92.183211 3.779022 92.183223 3.779036
4 108.565648 117.140453 7.898267 117.140422 7.898239
5 118.435253 123.319483 4.123967 123.319504 4.123985

The domain was chosen so that all of the eigenvalues for the discrete domain could

be calculated. For the problem above the null space of the discrete operator should

be empty which is the case for both discrete equations. The range space for the two

operators is different due to the different discretizations. The dimension of each space

is shown in Table 7.10 where Dim(Domain)=Dim(Range)+Dim(Null).

Table 7.10: Div-Grad Discrete Space Dimensions for Dirichlet Boundary Conditions

Space 0-form Div-Grad 3-form Div-Grad

Dim(Range) 512 729
Dim(Null) 0 0

Dim(Domain) 512 729

The eigenvalues are also compared for the homogeneous Neumann boundary con-

ditions which correspond to the natural boundary condition of the the 1 Div-Grad

operator and the essential boundary conditions of the 3-form Div-Grad operator (7.9)

∇ · (∇ψ0) = ω2
0ψ0 with ∇ψ0 · n̂ = 0 on Γ

∇ · (∇ψ3) = ω2
3ψ3 with ∇ψ3 · n̂ = 0 on Γ (7.9)

In this case the values for the coefficients m,n, l for the eigenvalues (7.5) are given in

(7.10).

m = 0, 1, 2, 3, 4...
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n = 0, 1, 2, 3, 4...

l = 0, 1, 2, 3, 4... (7.10)

The eigenvectors corresponding to the homogeneous Neumann boundary condition

are listed in (7.11).

ψ0 = ψ3 = Am,n,l cos(
mπ

a
) cos(

nπ

a
) cos(

lπ

a
) (7.11)

Table 7.11: Div-Grad Eigenvalues with Neumann Boundary Conditions

mode ω2 true ω2
0 calc % error ω2

3 calc % error

1 9.869604 9.970221 1.019461 9.970222 1.019465
2 19.739209 19.940442 1.019461 19.940443 1.019465
3 29.608813 29.910664 1.019461 29.910665 1.019465
4 39.478418 41.106501 4.123984 41.106495 4.123967
5 49.348022 51.076722 3.503080 51.076716 3.503067

The dimensions of the total domain, range and null spaces are shown in Table

7.12. In this case the null space is not empty due to the single zero eigenvalue when

m = n = l = 0.

Table 7.12: Div-Grad Discrete Space Dimensions for Neumann Boundary Conditions

Space 0-form Div-Grad 3-form Div-Grad

Dim(Range) 999 728
Dim(Null) 1 1

Dim(Domain) 1000 729

Both the 0-form and 3-form scalar wave equation discretizations conform to the

proper domain, range and null space dimensions for the two types of boundary con-

ditions listed above.
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7.3.2 Spherical cavity

The 0-form pressure and 3-form density scalar wave equations have the solution

(7.12) for a spherical region with radius a. This section will solve the scalar wave

equation to determine the frequencies for a closed spherical acoustic cavity in the

time domain. The entirely closed cavity has Neumann boundary conditions over the

entire region so that the normal component of the gradient of the pressure is zero

∇P · n̂ = 0.

ψ(r, θ, φ) = AmnpĴn(βr)Pm
n (cos(θ))[C cos(mθ) +Dsin(mθ)] (7.12)

∇ψ = 0 on Γ (7.13)

The frequencies (7.14) for the cavity are the roots β = παn,p

a
of the derivative of the

Spherical Bessel function Ĵ
′

m(βr) due to the Neumann boundary conditions.

f =
cl
2

αn,p

a

m = 0, 1, 2, 3, ...

n = 0, 1, 2, 3, ...

p = 1, 2, 3, ... (7.14)

A series of related meshes for each of the hexahedral and tetrahedral grids as

discussed in Section 7.1 is used to determine the convergence of the wave equation.

Grids with prism domain decompositions are not used due to the geometry. A time

domain simulation with an excitation of the second derivative of a Gaussian over

5% of the degrees of freedom results in a power spectrum as in Figure 7.1. This

simulation was run for 50 periods of the lowest mode. The Gaussian pulses used are

short duration and are introduced at the beginning of the simulation.



181

The lowest exact frequencies for the scalar wave equation with cl = 1 are shown in

Table 7.13. Due to stability constraints the total number of timesteps taken increases

with the grid size so that all of the simulations run for different total cpu times.

Table 7.13: Exact Lowest Acoustic Frequencies

fm11 fm12 f002 fm31 fm21 fm41

5.6584 9.0845 12.2143 12.2701 15.3493 16.1477

The second order 0-form discrete acoustic wave equation (3.93) is used to deter-

mine the acoustic frequencies of the spherical cavity in the time domain. A conjugate

gradient method is used to solve the mass consistent matrix M0. Ten degrees of free-

dom are chosen at random for which the field data is written out at every timestep.

This data is zero extended to a power of two, the Fourier transform applied and a

power spectrum created. The power spectra for the series of hexahedral grids shown

in Table 7.2 is shown in Figure 7.1. The exact frequencies are represented in the

spectra as vertical lines. As the grids are refined the peak representing the computed

frequency approaches the true frequency.

The power spectra were also calculated for the tetrahedral grids listed in Table

7.3. These spectra are shown in Figure 7.2. The errors for both the hexahedral and

tetrahedral 0-form acoustic wave equation time domain frequency simulations are

shown in Table 7.14. A plot of the logarithm of the error versus the logarithm of h
a

for the hexahedral and tetrahedral grids is shown in Figure 7.3.

A least squares fit is be applied to the data and is also shown in Figure 7.3. The

results show the slope for the hexahedral grid series is 2.26 while the slope for the

tetrahedral grids is 1.97. Both show the simulations give errors that are second order
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Figure 7.1: Power Spectra for the 0-form acoustic simulation for the series of hexa-
hedral grids (h

a
= 1

4
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, 1

8
, 1

10
;left to right,top to bottom)

Table 7.14: 0-form Acoustic Refinement Results

Element Parameter Mesh 1 Mesh 2 Mesh 3 Mesh 4 Slope

Hex Edge Length 0.025 0.017 0.013 0.010 2.26
Error 0.176 0.076 0.048 0.022

Tet Edge Length 0.034 0.025 0.020 0.017 1.97
Error 0.179 0.080 0.053 0.030
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Figure 7.2: Power Spectra for the 0-form acoustic simulation for the series of tetra-
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accurate. The number of degrees of freedom is the same in both series of grids so

that the simulations should give the same slope. The discrepancy in the slopes is due

to the solution method.
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Figure 7.3: Mesh Refinement Results for 0-form Pressure Wave Equation

The second order 3-form discrete acoustic wave equation (3.100) is used to deter-

mine the acoustic frequencies of the spherical cavity in the time domain. The method

used to solve this wave equation is the same as in the 0-form acoustic wave equation.

The power spectra for the series of hexahedral grids shown in Table 7.2 is shown in

Figure 7.4. The exact frequencies are represented in the spectra as vertical lines. As

the grids are refined the peak representing the computed frequency approaches the

true frequency.

The power spectra were also calculated for the tetrahedral grids listed in Table

7.3. These spectra are shown in Figure 7.5.

The 3-form acoustic wave equation error results show a different trend than the 0-
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Figure 7.4: Power Spectra for the 3-form acoustic simulation for the series of hexa-
hedral grids (h
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form acoustic wave equation. The tetrahedrons are constructed from the hexahedrons.

Each hex is decomposed into six tetrahedrons giving six times as many tetrahedrons

than hexahedrons for a mesh with an equivalent h
a
.

Table 7.15: 3-form Acoustic Refinement Results

Element Parameter Mesh 1 Mesh 2 Mesh 3 Mesh 4 Slope

Hex Edge Length 0.025 0.017 0.013 0.010 2.25
Error 0.436 0.179 0.106 0.058

Tet Edge Length 0.034 0.025 0.020 0.017 2.18
Error 0.139 0.056 0.038 0.028

The plot of the logarithm of error versus the logarithm of h
a

is shown in Figure 7.6.

A least squares fit was applied to the data giving a slope of 2.25 for the hexahedron

series and 2.18 for the tetrahedron series showing that the method is second order

accurate. The tetrahedral grid errors are much lower than the hexahedral grid for

the same h
a

due to the much larger number of degrees of freedom in the tetrahedral

grids.

7.4 Electrodynamic Vector Wave Equation

7.4.1 Space characterization

In this section we look at the eigenvalues of the two different discretizations for the

Helmholtz equation. The eigenvalues and eigenvectors will be calculated for the same

10x10x10 hexahedral grid used in Section 7.3.1. This mesh has 729 elements, 1000

nodes elements of which 512 are internal, 2700 edges of which 1728 are internal and

2430 faces of which 1944 are internal. The actual eigenvalues are ω2
mn = 1

εµ
π2(m2

a2 +
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Figure 7.6: Mesh Refinement Results for 3-form Density Wave Equation

n2

b2
+ l2

c2
) where a, b, c are the dimensions of the box and m,n, l are the mode numbers.

For both of the cases listed below, the coefficients m,n, l for the eigenvalues are given

in (7.15).

m = 0, 1, 2, 3, 4...

n = 0, 1, 2, 3, 4...

l = 0, 1, 2, 3, 4...

except m = n = l = 0 (7.15)

The domain for the following simulations is a unit cube.

The eigenvalues will be compared for the essential boundary conditions of the edge

Curl-Curl operator corresponding to the homogeneous Dirichlet boundary conditions

and essential boundary conditions of the face Curl-Curl equations corresponding to
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the homogeneous Dirichlet boundary condition (7.16) with ε = µ = 1.

∇×∇× ~ψ1 = ω2
1
~ψ1 with ~ψ1 × n̂ = 0 on Γ

∇×∇× ~ψ2 = ω2
2
~ψ2 with ~ψ2 · n̂ = 0 on Γ (7.16)

The eigenvalues for these two equations are compared in Table 7.16. The table shows

the agreement with the true eigenvalues and with each other for the different dis-

cretizations and different imposed boundary conditions of the vector Helmholtz equa-

tion.

Table 7.16: Curl-Curl Eigenvalues with Dirichlet Boundary Conditions

mode ω2
1,2 true ω2

1 calc % error ω2
2 calc % error

1 19.739209 19.940443 1.019465 19.940443 1.019465
2 29.608813 29.910665 1.019465 29.910665 1.019465
3 49.348022 51.076716 3.503067 51.076716 3.503067
4 59.217626 61.046938 3.089133 61.046938 3.089133
5 78.956835 82.212989 4.123967 82.212989 4.123967

The difference between the two discretizations can be seen in Table 7.17. For the

homogeneous Dirichlet boundary conditions the dimension of the non-zero eigenvalues

is the same, while the dimension of the null space is different leading to the different

total dimension size.

Table 7.17: Curl-Curl Discrete Space Dimensions for Dirichlet Boundary Conditions

Space 1-form Curl-Curl 2-form Curl-Curl

Dim(Range) 1216 1216
Dim(Null) 512 728

Dim(Domain) 1728 1944

Alternatively the eigenvalues and eigenvectors can be determined for the natural

boundary conditions of the edge Curl-Curl corresponding to the homogeneous Neu-
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mann boundary conditions and the natural boundary conditions of the face Curl-Curl

equation corresponding to the homogeneous Neumann boundary conditions (7.17).

∇×∇× ~ψ1 = ω2
1
~ψ1 with ∇× ~ψ1 × n̂ = 0 on Γ

∇×∇× ~ψ2 = ω2
2
~ψ2 with ~ψ2 × n̂ = 0 on Γ (7.17)

The eigenvalues for these two operators are shown in Table 7.18. These eigenvalues

agree with the true eigenvalues and with each other. For this particular domain

the eigenvalues for the homogeneous Dirichlet and homogeneous Neumann operators

agree. The eigenvectors are different but are related by the formula ~ψ2 = ∇× ~ψ1.

Table 7.18: Curl-Curl Eigenvalues with Neumann Boundary Conditions

mode ω2
1,2 true ω2

1 calc % error ω2
2 calc % error

1 19.739209 19.940442 1.019461 19.940442 1.019461
2 29.608813 29.910664 1.019461 29.910664 1.019461
3 49.348022 51.076722 3.503078 51.076722 3.503078
4 59.217626 61.046943 3.089142 61.046943 3.089142
5 78.956835 82.213002 4.123984 82.213002 4.123984

The dimensions for the operators with the homogeneous Neumann boundary con-

ditions applied are listed in Table 7.19. The dimensions of the range space again

agree between the two operators while the null space and total dimensions do not

agree due to the different number of degrees of freedom.

Table 7.19: Curl-Curl Discrete Space Dimensions for Neumann Boundary Conditions

Space 1-form Curl-Curl 2-form Curl-Curl

Dim(Range) 1701 1701
Dim(Null) 999 729

Dim(Domain) 2700 2430
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7.4.2 Spherical cavity

The electric field in a spherical cavity of radius a can be decomposed into two

independent modes: the transverse electric TEr and transverse magnetic TMr modes.

The full electric field in the cavity is the sum of these modes with suitable time

oscillation terms. These modes can be found in many electrodynamics texts e.g. [30].

The TEr spherical cavity modes are shown in (7.18).

~Er(r, θ, φ) = 0

~Eθ(r, θ, φ) = −Amnp
m
εr

1
r sin(θ)

Ĵn(βr)Pm
n (cos(θ))[−C sin(mφ) +D cos(mφ)]

~Eφ(r, θ, φ) = Amnp
1
εr
Ĵ

′

n(βr)P
′m
n (cos(θ))[C cos(mφ) +D sin(mφ)]

~Eθ = 0 on Γ

~Eφ = 0 on Γ (7.18)

The frequencies (7.19) for the cavity are the roots β = γn,p

a
of the spherical Bessel

functions jn(βr) .

f =
1

2πa
√
µε

γn,p

a

m = 0, 1, 2, 3, ...,≤ n

n = 1, 2, 3, ...

p = 1, 2, 3, ... (7.19)

The TMr cylindrical cavity mode is shown in (7.20).

~Er(r, θ, φ) = Bmnp
β2

jωµε
Ĵ

′′

n(βr)Pm
n (cos(θ))[C cos(mφ) +D sin(mφ)]

~Eθ(r, θ, φ) = Bmnp
β

iωµεr
Ĵ

′

n(βr)P
′m
n (cos(θ))[Cφ(mθ) +D sin(mφ)]
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~Eφ(r, θ, φ) = Bmnp
mβ
iωµε

1
r sin(θ)

Ĵ
′

n(βr)Pm
n (cos(θ))[−C sin(mφ) +D cos(mφ)]

~Eθ = 0 on Γ

~Eφ = 0 on Γ

The frequencies (7.20) for the cavity are the roots β =
γ
′

n,p

a
of the the derivative of

the spherical Bessel function of order n J
′

n(βr).

fm,n,p =
1

2πa
√
µε

γ
′

n,p

a

m = 0, 1, 2, 3, ...,≤ n

n = 1, 2, 3, ...

p = 1, 2, 3, ... (7.20)

In this section both the 1-form discrete electric field equation (3.118) and the 2-

form discrete magnetic flux density (3.115) equations are used to simulate the fields

in the spherical cavity with ε = µ = 1. The spherical cavity of radius a = 0.05855m is

exited by the second derivative of a Gaussian over 5% of the degrees of freedom. The

simulations were run for 50 periods of the lowest frequency the TM11 mode shown in

Table 7.20. The length of the simulation was different in each of the four cases for

the hexahedral and tetrahedral grids due to stability constraints.

Table 7.20: Exact Lowest Electrodynamic Frequencies

TM11 TM21 TE11 TM31 TE21 TM41

7.4589 10.5655 12.2132 13.518 15.6654 16.4782

Ten degrees of freedom were chosen at random and output at every timestep.

The time series for each degree of freedom was zero extended to a power of 2 then
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Fourier transformed to determine the power spectrum. The power spectra for the four

hexahedral grids listed in Table 7.2 are shown in Figure 7.7. The true frequencies are

represented as straight lines. It is apparent that as the grids are refined the peaks

approach the true value.
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Figure 7.7: Power Spectra for the 1-form electrodynamic simulation for the series of
hexahedral grids (h

a
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;left to right,top to bottom)

The power spectra for the four tetrahedral grids listed in Table 7.3 are shown

in Figure 7.8. The tetrahedral grids have more edge and face degrees of freedom

than an equivalent hexahedral grid with the same number of nodes. The tetrahedral

grid results are therefore more accurate than the hexahedral grid results. It is not

possible to discretize the spherical domain with prisms therfore only the hexahedral

and tetrahedral grid results are presented.
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A table of the edge length and absolute error form the 1-form electric field equation

is shown in Table 7.21. If the logarithm of the error versus the logarithm of h
a

is

plotted, a least square fit can be calculated. The slope of the resulting fit determines

Table 7.21: 1-form Electrodynamic Refinement Results

Element Parameter Mesh 1 Mesh 2 Mesh 3 Mesh 4 Slope

Hex Edge Length 0.025 0.017 0.013 0.010 2.29
Error 0.300 0.148 0.063 0.042

Tet Edge Length 0.034 0.025 0.020 0.017 2.29
Error 0.148 0.066 0.032 0.020

the accuracy of the method. In this case both the tetrahedral and hexahedral results

have a slope of 2.29 showing the method is second order accurate. A plot of the

logarithm of the error versus the logarithm of h
a

is shown in Figure 7.9.
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Figure 7.9: Mesh Refinement Results for 1-form Electric Field Wave Equation

The simulation for the 2-form magnetic flux density equation is simulated in the

same manner as the 1-form electric field simulation above. The same number of
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degrees of freedom were chosen to excite with the second derivative of a Gaussian.

Ten degrees of freedom were chosen to sample for the power spectrum calculations.

The hexahedral grid results for the 2-form magnetic field wave equation are shown

in Figure 7.10. These spectra also show the true frequencies as straight lines on the

plot.
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Figure 7.10: Power Spectra for the 2-form electrodynamic simulation for the series of
hexahedral grids (h
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The tetrahedral results for the 2-form magnetic flux density equation are shown

in Figure 7.11.

The errors for the hexahedral and tetrahedral spectra are listed in Table 7.22.

The tetrahedral results are again better than the hexahedral results due to a larger

number of degrees of freedom for the same value of h
a
. The least square fit of the data
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shown in Figure 7.12 is 2.14 for the hexahedral case and 2.59 for the tetrahedral case

showing the method is second order accurate.

Table 7.22: 2-form Electrodynamic Refinement Results

Element Parameter Mesh 1 Mesh 2 Mesh 3 Mesh 4 Slope

Hex Edge Length 0.025 0.017 0.013 0.010 2.14
Error 0.287 0.115 0.065 0.044

Tet Edge Length 0.034 0.025 0.020 0.017 2.59
Error 0.219 0.093 0.048 0.021
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Figure 7.12: Mesh Refinement Results for 2-form Magnetic Field Wave Equation

7.5 Acoustic Vector Wave Equation

7.5.1 Space characterization

As in the scalar acoustic and electrodynamics equation sections above the eigen-

values and space dimensions will be analyzed for the vector acoustic wave equation. In
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this section the operator being examined is the Grad-Div operator. The eigenvalues

for this operator are listed in (7.21).

ω2
mnl = c2l π

2(
m2

a2
+
n2

b2
+
l2

c2
) (7.21)

The first set of eigenvalues is the comparison of the homogeneous Dirichlet boundary

conditions of the edge Grad-Div operator and the homogeneous Neumann boundary

conditions of the face Grad-Div equation (7.22).

∇(∇ · ~ψ1) = ω2
1
~ψ1 with ~ψ1 × n̂ = 0 on Γ

∇(∇ · ~ψ2) = ω2
2
~ψ2 with ~ψ2 · n̂ = 0 on Γ (7.22)

In this case the values for the coefficients m,n, l for the eigenvalues (7.21) are given

in (7.23).

m = 1, 2, 3, 4...

n = 1, 2, 3, 4...

l = 1, 2, 3, 4... (7.23)

The eigenvalues for these two operators are listed in Table 7.23. These eigenvalues

agree with the true eigenvalues each other and with the scalar acoustic wave equation

values listed in Table 7.9.

The comparison of the space dimensions for these operators are listed in Table

7.24. The dimensions of these operators agree for the null space in contrast with the

Curl-Curl operators which agreed in the range space dimensions. Also note that the

dimension of these operators null space is the same size as the range spaces of the

Curl-Curl operators with Neumann boundary.
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Table 7.23: Grad-Div Eigenvalues with Dirichlet Boundary Conditions

mode ω2
1,2 true ω2

1 calc % error ω2
2 calc % error

1 29.608813 29.910665 1.019465 29.910664 1.019461
2 59.217626 61.046938 3.089133 61.046943 3.089142
3 88.826440 92.183211 3.779022 92.183223 3.779036
4 108.565648 117.140453 7.898267 117.140422 7.898239
5 118.435253 123.319483 4.123967 123.319504 4.123985

Table 7.24: Grad-Div Discrete Space Dimensions for Dirichlet Boundary Conditions

Space 1-form Grad-Div 2-form Curl-Curl

Dim(Range) 512 728
Dim(Null) 1216 1216

Dim(Domain) 1728 1944

A comparison of the homogeneous Neumann boundary conditions of the edge

Grad-Div operator and the homogeneous Dirichlet boundary conditions of the face

Grad-Div equation (7.22) are shown in Table 7.25.

∇(∇ · ~ψ1) = ω2
1
~ψ1 with ∇× ~ψ1 × n̂ = 0 on Γ

∇(∇ · ~ψ2) = ω2
2
~ψ2 with ∇ · ~ψ2 = 0 on Γ (7.24)

In this case the values for the coefficients m,n, l for the eigenvalues (7.21) are given

in (7.25).

m = 0, 1, 2, 3, 4...

n = 0, 1, 2, 3, 4...

l = 0, 1, 2, 3, 4... (7.25)

These eigenvalues are the same as the scalar eigenvalues listed in Table 7.11.

The space dimensions for these operators follow the same pattern as the eigen-

values listed above. The null space dimensions agree while the range and total space
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Table 7.25: Grad-Div Eigenvalues with Neumann Boundary Conditions

mode ω2
1,2 true ω2

1 calc % error ω2
2 calc % error

1 9.869604 9.970221 1.019461 9.970222 1.019465
2 19.739209 19.940442 1.019461 19.940443 1.019465
3 29.608813 29.910664 1.019461 29.910665 1.019465
4 39.478418 41.106501 4.123984 41.106495 4.123967
5 49.348022 51.076722 3.503080 51.076716 3.503067

dimensions differ. The dimension of the null space for these Grad-Div operators are

also the same as the dimensions of the range space for the Curl-Curl operators with

Dirichlet boundary conditions.

Table 7.26: Grad-Div Discrete Space Dimensions for Neumann Boundary Conditions

Space 1-form Grad-Div 2-form Grad-Div

Dim(Range) 999 729
Dim(Null) 1701 1701

Dim(Domain) 2700 2430

7.5.2 Spherical cavity

The velocity field in a spherical cavity of radius a can be derived from the scalar

wave equations spherical modes using the mode as the velocity potential φ. The

velocity and the velocity potential are related through the formula ~V = −∇φ . The

velocity modes for the spherical cavity are shown in (7.26).

~Vr(r, θ, φ) = −AmnpβJ
′

n(βr)Pm
n (cos(θ))[B cos(mφ) + C sin(mφ)]

~Vθ(r, θ, φ) = −Amnp
1

r
Jn(βr)P

′m
n (cos(θ))[B cos(mφ) + C sin(mφ)]

~Vφ(r, θ, z) = −Amnp
m

r sin(θ)
Jn(βr)Pm

n (cos(θ))[−B sin(mφ) + C cos(mφ)]

~V · n̂ = 0 on Γ (7.26)
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The frequencies (7.27) for the cavity are a combination of the roots β = παn,p

a
of the

derivative of the spherical Bessel functions Ĵ
′

n(βr). The exact frequencies are the

same values as in the scalar acoustic wave equation Table 7.13.

f =
cl
2

αn,p

a

m = 0, 1, 2, 3, ...

n = 0, 1, 2, 3, ...

p = 1, 2, 3, ... (7.27)

The vector acoustic wave equation can be simulated using both a 1-form discretiza-

tion and a 2-form discretization just as either form can be used in the electrodynamic

simulations. The second order 1-form acoustic wave equation (3.127) with cl = 1 is

used to produce the power spectra for the hexahedral grids listed in Table 7.2 and

are shown in Figure 7.13. As in the previous spherical cavity simulations 5% of the

total degrees of freedom are chosen to excite with the second derivative of a Gaussian.

Ten output degrees of freedom are chosen to calculate the power spectra as in the

previous spherical cavity sections.

The corresponding tetrahedral grid power spectra for the grids listed in Table 7.3

are shown in Figure 7.14. As in the previous cases the tetrahedral results are more

accurate due to the larger number of 1-form degrees of freedom.

The errors and edge lengths for the hexahedral 1-form acoustic wave equation

simulations are listed in Table 7.27. If a least squares fit is applied to the plots

of the logarithm of error versus the logarithm of h
a
, Figure 7.15, slopes of 1.83 and

1.95 for the hexahedral and tetrahedral grids respectively result. These slopes show
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the 1-form vector acoustic wave equation is second order accurate agreeing with the

dispersion relation.

Table 7.27: 1-form Acoustic Refinement Results

Element Parameter Mesh 1 Mesh 2 Mesh 3 Mesh 4 Slope

Hex Edge Length 0.025 0.017 0.013 0.010 1.83
Error 0.176 0.085 0.046 0.037

Tet Edge Length 0.034 0.025 0.020 0.017 1.95
Error 0.176 0.081 0.053 0.030
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Figure 7.15: Mesh Refinement Results for 1-form Velocity Field Wave Equation

The natural discrete formulation for the vector acoustic wave equation is listed

in (3.133). A sound speed of cl = 1 is used in this 2-form formulation. The same

method as the 1-form simulations was applied to the hexahedral and tetrahedral

spherical grids.

The power spectra for the hexahedral grids listed in Table 7.2 are shown in Figure

7.16. The exact frequencies are represented as vertical lines in the plots.
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The power spectra for the tetrahedral grids listed in Table 7.3 are shown in Figure

7.17.
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Figure 7.17: Power Spectra for the 2-form acoustic simulation for the series of tetra-
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The edge lengths and errors are listed in Table 7.28. The plots of the logarithm

of the error versus the logarithm of h
a

along with the least squares fit are shown in

Figure 7.18. The number of degrees of freedom in the tetrahedral grids is larger than

the number in the hexahedral grids giving lower errors. The hexahedral grid results

give a slope of 2.22 while the tetrahedral grid results show a slope of 2.40. Both

slopes agree with the dispersion relation which states this discrete 2-form acoustic

wave equation is second order accurate.
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Table 7.28: 2-form Acoustic Refinement Results

Element Parameter Mesh 1 Mesh 2 Mesh 3 Mesh 4 Slope

Hex Edge Length 0.025 0.017 0.013 0.010 2.22
Error 0.424 0.178 0.106 0.058

Tet Edge Length 0.034 0.025 0.020 0.017 2.40
Error 0.139 0.063 0.024 0.012
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Figure 7.18: Mesh Refinement Results for 2-form Velocity Field Wave Equation
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7.6 Combined Vector Wave Equations

In the next two sections preliminary work combining natural and adjoint oper-

ators as well as more esoteric operators is researched. The first of these combined

wave equations is the elasticity equation. This equation involves combining a natural

second order differential operator with the adjoint second order differential operator

resulting in the vector Laplacian. The second combined wave equation is the linear

magnetohydrodynamic equation. This equation involves the vector acoustic operator

with a transverse wave term. Both of the combined wave equations are simulated on

hexahedral domains with one element in the z direction. This allows an effectively

two dimensional simulation on a three dimensional mesh.

7.6.1 Linear elastic waves

The second order linear elastic wave equation involves the combination of the nat-

ural second order differential operator with the adjoint differential operator resulting

in the vector Laplacian operator. In the following simulation the displacement ~u will

be represented as either a 1-form or a 2-form. The natural and adjoint operators

for both of these forms have been presented in the previous sections. Boundary con-

ditions for the linear elastic equation require specification of all three components

of the displacement or the traction. Using the differential forms formulation limits

the possible boundary conditions to specifying the normal or tangential component

of the displacement or specific components of the flux. Each term in the discrete

linear elastic equations has a different boundary condition associated with it. Us-

ing the Dirichlet boundary conditions for each of the operators constrains all of the
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components on the boundary.

The mesh used in the space characterization sections for the scalar Laplacian

Curl-Curl and Grad-Div operators above is used in this section to verify the vector

Laplacian operator. The 10x10x10 element hexahedral grid is used to determine

the eigenvalues for the domain with homogeneous Dirichlet boundary conditions.

The homogeneous Dirichlet boundary conditions correspond to the natural boundary

conditions for the 1-form vector Laplacian and the essential boundary conditions for

the 2-form vector Laplacian.

Table 7.29: Vector Laplacian Eigenvalues with Dirichlet Boundary Conditions

mode ω2 true ω2
1 calc % error ω2

2 calc % error

1 9.869604 9.951043 0.825 9.951043 0.825
2 19.739209 19.94029 1.02 19.94029 1.02
3 29.608813 29.85313 0.825 29.85313 0.825
4 39.478418 40.79356 1.00 40.79356 1.00
5 49.348022 50.74460 2.83 50.74463 2.83

The simulation represented below analyzes the speeds of the longitudinal and

transverse waves to verify the discretization. The parameters for the square hexahe-

dral grid with dimensions [0,1]x[0,1] used in the simulation are shown in Table 7.30.

This grid is effectively two-dimensional with a single cell in the third dimension so

that the three-dimensional matrix generator may be utilized. At the center of the

grid a displacement source defined by the second derivative of a Gaussian is used.

The longitudinal and transverse waves will propagate outward with a circular pat-

tern. The simulation is halted when the longitudinal wave encounters the boundary.

Four snapshots of the time series are shown in Figure 7.19.
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Figure 7.19: 2D 2-form linear elastic wave displacement magnitude

Table 7.30: Hexahedral Elastic Wave Mesh

Elements Nodes Edges Faces

39601 80000 199200 158802
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Table 7.31: 2-form Elastic wave speeds

cl % error ct % error

1.29390 3.79 0.431768 0.743

7.6.2 Linear magnetohydrodynamic modes

The second order linear magnetohydrodynamics equation consists of an acoustic

term and a transverse wave term. In this section the eigenvalues for the transverse

wave term will be calculated. The acoustic eigenvalues for a three dimensional rect-

angular cavity have been computed above and will not be repeated for the two di-

mensional region used in this section. The mesh used in this section is a 10x10x1

Cartesian mesh with uniform spacing. The one element in the z-direction is used to

make the mesh logically three dimensional in order to utilize the three dimensional

mesh generator. The eigenvalue results for the second order transverse eigenvalue

equation (7.28) are given below

λ =
(n2 +m2)π2

L2
xL

2
y

(7.28)

where Lx = 1, Ly = 1, n,m = 1, 2, ... . The eigenvalues are solved for two different

situations. ~v · n̂ = 0 on Γ,~v · n̂ = 0 on Γx and Γz and ~v · t̂ = 0 on Γy

Table 7.32: MHD term eigenvalues

m n Calculated Exact Rel. Error

1 1 19.7371 19.7392 0.0107
1 2 49.0196 49.3480 0.6655
1 2 50.3238 49.3480 1.973
2 2 78.8058 78.9568 0.19
2 2 78.8136 78.9568 0.18
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Table 7.33: MHD term eigenvalues

m n Calculated Exact Rel. Error

1 1 19.7371 19.7392 0.0107
1 2 49.0196 49.3480 0.6655
1 2 50.3238 49.3480 1.973
2 2 78.8058 78.9568 0.19
2 2 78.8136 78.9568 0.18

Figure 7.20: 2 Dimensional Acoustic and MHD Term Eigenmodes
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7.7 Parallel Results

As stated in the introduction of this dissertation the main focus is simulation of

large electro-optics devices. These simulations require small timesteps for stability

and long run times for analysis. They also require large amounts of random access

memory (RAM) to store the system matrices. All of these requirements lead to the

necessity of running the problems in parallel. The parallel method used is based on

the Message Passing Interface (MPI) discussed in Chapter 6. Also discussed Chapter

6 were the limitations of the parallel method with respect to communication overhead

versus overall efficiency. If the parallelism does not decrease the runtime for a fixed

problem size then the utility of the formulation is suspect.

This section applies several metrics to a larger version of the cylindrical grid used

in the previous sections. The grid consists of 100,000 hexahedrons with 304,000

faces, 308,090 edges and 104,091 nodes. The four equations in scalar and vector

acoustic equations as well as the two electrodynamics equations are analyzed. The

formulations will be analyzed for parallel runs with 2p number of processors with

p = 0, 1, 2, 3, 4, 5.

The results are shown in Table 7.34. The metrics used are the number of Jacobi

preconditioned Conjugate Gradient method iterations per solve, the total time for a

single run, the time for building the matrix without communication, and the time for

communicating the off processor data. All of the simulations were run for the same

total simulation time.

As discussed previously in Section 4.3 the number of Jacobi preconditioned Con-

jugate Gradient method iterations is independent of the number of processors used.
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Table 7.34: Hexahedral Grid Parallel Results

Form Metric 1 2 4 8 16 32

JCG Iter. 21 21 21 21 21 21
JCG

CPU Secs. 6586 2479 1359 687 382 213
Matrix

Build Secs. 103.71 25.44 12.26 6.18 3.29 1.81
Matrix

0

Assembly Secs. 0.00 13.70 3.74 3.25 2.11 1.75
JCG Iter. 17 17 17 17 17 17

JCG
CPU Secs. 3640 2609 1393 725 390 212

Matrix
Build Secs. 183.57 66.21 32.56 11.01 5.68 2.92

Matrix

1

Assembly Secs. 0.00 16.14 11.31 7.61 4.97 3.86
JCG Iter. 17 17 17 17 17 17

JCG
CPU Secs. 3456 3052 1605 923 443 246

Matrix
Build Secs. 88.67 63.22 20.64 10.67 5.52 2.82

Matrix

2

Assembly Secs. 0.00 18.21 9.39 9.33 5.87 4.58
JCG Iter. 17 17 17 17 17 17

JCG
CPU Secs. 3062 2659 1382 799 394 235

Matrix
Build Secs. 34.92 25.82 18.62 4.36 2.28 1.19

Matrix

3

Assembly Secs. 0.00 4.04 2.17 2.15 1.32 1.06
JCG Iter. 24 24 24 24 24 24

JCG
CPU Secs. 8511 7026 3722 1993 1081 586

Matrix
Build Secs. 251.94 121.53 59.18 30.24 15.50 7.88

Matrix

1 EM

Assembly Secs. 0.00 26.86 19.40 18.08 12.27 9.39
JCG Iter. 24 24 24 24 24 24

JCG
CPU Secs. 7581 6034 3135 1791 918 484

Matrix
Build Secs. 102.09 49.96 24.60 12.56 6.42 3.31

Matrix

2 EM

Assembly Secs. 0.00 19.60 8.78 8.12 5.62 4.20
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It is interesting to note the number of iterations per solve for each of the various

wave equations is consistent between wave equation types except for the nodal scalar

acoustic equation.

In each of the cases the total run time is decreased as the number of processors

is increased. The total simulation time and speedup for each of the various wave

equations are plotted in Figure 7.21 and Figure 7.22 respectively.
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Figure 7.21: Hexahedral Grid Jacobi CG Run Times
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Figure 7.22: Hexahedral Grid Jacobi CG Speedup



219

Chapter 8

Results

In the previous chapter simulations with known solutions were used for verifica-

tion. In this chapter simulations with no known solution are presented. These simu-

lations include pulse propagation in bent optical fibers, a photonic band gap device

and a sonic band gap device. An issue with finite domains is the use of radiation or

absorbing boundary conditions to truncate the physical domain. The majority of the

theory surrounding these boundary conditions is for electrodynamics. The perfectly

matched layer (PML) [64], [65] as well as the Sommerfeld boundary condition [14]

are both used in general to provide absorbing boundary conditions. The PML is also

used in acoustic wave simulations [66]. In this chapter the PML will be applied to

the following simulations.

8.1 Optical fiber waveguide

The optical fiber [67], [68] is a ubiquitous method for communication of data for

applications from phone calls to fighter planes. In this section a single mode step index
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optical fiber will be simulated. An optical fiber capable of carrying many modes is

called a multimode fibers. These multimode fibers have core radii of 20-150 µm.

In this section a single mode step index optical fiber will be simulated. To study

the power loss of the propagated mode, the optical fiber will be bent at various angles.

The TE01 mode of the optical fiber with a Gaussian envelope will be introduced into

the optical fiber and the power will be recorded in several locations along the length

of the fiber.

The three-dimensional full vectoral time-domain simulation of an optical fiber

requires a large simulation domain even for physically short optical fibers. A typical

single mode optical fiber has a core radius of 5-10 micrometers and a cladding radius

of 120 micrometers which is in turn surrounded by buffers and mechanical cladding.

The overall length of the fiber can be in the 10s of kilometers before an amplifier

is needed. In this simulation the total length of the optical fiber with PML region

is 54.5 micrometers. The fiber will be represented by a cylindrical core surrounded

by a cylindrical shell, representing the cladding. The radius of the core is 5 microns.

A typical single mode optical fiber will have a cladding radius of 120 micrometers.

This would make the simulation domain untenable. To reduce the simulation domain

the radius of the cladding is extended 10 micrometers past the TE01 mode’s extinc-

tion point resulting in a 30-micrometer fiber. The total length of the fiber is 52.5

micrometers, the bend radii are listed in Table 8.1.

The mode being propagated down the optical fiber is not the fundamental mode

called HE11 but the next higher mode, the lowest transverse electric mode, TE01.

This is done due to the non-zero propagation direction component of the HE11 mode.
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Table 8.1: Bend radii for the bent optical fibers

Bend Angle Bend Radius µm

30 100.27
45 66.845
60 55.134

The TE01 mode for a step index fiber is defined in both the core and the cladding.

In the cladding region the mode is an evanescent or radiating mode while in the core

the mode is a propagating mode. The cylindrical geometry of the fiber results in a

solution for the mode involving Bessel functions. The roots of the Bessel functions

determine the modes. These roots are defined by the index of refraction in the core,

n1, and the cladding, n2 and the wave number in the core, k1 and the cladding, k2.

The TE and TM modes for the fiber are shown for the core (8.1) and cladding (8.2)

with boundary condition ~E × n̂ = 0; on Γ.

~Er(r, θ, z) = −Amn
m

εr
Jm(κr)[−C sin(mθ) +D cos(mθ)]e−jβzz

~Eθ(r, θ, z) = Amn
κ

ε
J

′

m(κr)[C cos(mθ) +D sin(mθ)]e−jβzz

~Ez(r, θ, z) = 0 (8.1)

~Er(r, θ, z) = −Bmn
m

εr
Km(γr)[−C sin(mθ) +D cos(mθ)]e−jβzz

~Eθ(r, θ, z) = Bmn
γ

ε
K

′

m(γr)[C cos(mθ) +D sin(mθ)]e−jβzz

~Ez(r, θ, z) = 0 (8.2)

The simulation uses the second order electrodynamic wave equation with a PML

boundary condition shown in (8.3). The PML regions consist of a 30 zone region
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Table 8.2: Optical fiber parameters

n1 n2 κ γ V ev ω

1.471 1.456 0.602675 0.557111 4.25 2 4.053668

with a cubic increase in conductivity. Separate PML regions are used for the core

and cladding regions.

∂2 ~E

∂t2
= −∇× µ−1∇× ~E − (σE + µ−1σMε)

∂ ~E

∂t
− µ−1σMσE

~E (8.3)

The grid used for the simulations consists of 1.8 million elements with 5.5 million

degrees of freedom. The grid with a bend angle of 30◦ is shown in Figure 8.1.

A single timestep in the time series is shown for the optical fiber pulse simulations

for a straight fiber, Figure 8.2, a 30 degree bent fiber, Figure 8.3, a 45 degree bent

fiber, Figure 8.4, and a 60 degree bent fiber, Figure 8.5.

The power loss results are shown in Table 8.3.

Table 8.3: Curvature loss for the bent optical fibers

Bend Angle Measured % Loss

0 0.05
30 0.47
45 0.70
60 0.85

8.2 Photonic band gap waveguide

Photonic bandgap (PBG) devices [69] are the two and three-dimensional exten-

sions of Bragg’s Law to the optical regime. In this section a logically two-dimensional
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Figure 8.1: Bent optical fiber grid.
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Figure 8.2: TE01 pulse propagating down a straight optical fiber.
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Figure 8.3: TE01 pulse propagating down an optical fiber with a 30 degree bend.
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Figure 8.4: TE01 pulse propagating down an optical fiber with a 45 degree bend.
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Figure 8.5: TE01 pulse propagating down an optical fiber with a 60 degree bend.
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simulation of a photonic bandgap waveguide will be analyzed. The PBG devices do

not allow the propagation of energy through the domain for any incident wave within

its stopgap or range of non-propagating frequencies. Introducing a defect in the struc-

ture allows a small range of wavelengths of light around a central defect frequency to

propagate through the structure. Due to the nature of the photonic bandgap waveg-

uide the light can be directed in arbitrary directions even ninety degree bends with

very small energy loss. A ninety degree bend on the same scale in a purely optical

device would result in the loss of a significant amount of energy. The ninety degree

bend is possible due to Bragg diffraction occurring in all directions except where the

defect exists. The energy has no direction to travel except within the defect waveg-

uide. A mesh of the photonic band gap waveguide is shown in Figure 8.6. This mesh

shows a two-dimensional section of a device with infinite Gallium-Arsenide (GaAs)

rods arranged in a square array surrounded by air. Photonic structures such as these

are characterised by the ratio of the rod radius r to the rod spacing, or lattice con-

stant, a. For this mesh the ratio r
a

= 0.18 is chosen for a frequency of λ = 1.55 µm

this gives a Transverse Magnetic (TM) stopgap of ω = 0.302 2πc
a

to ω = 0.4432πc
a

. In

this simulation the TM modes are the modes with the electric field parallel to the

GaAs columns.

The rod spacing for the geometry is a = 0.62 µm with the relative electric permit-

tivity for the GaAs rods εr = 12 and the relative electric permittivity for air εr = 1.0.

To create the defect waveguide in the simulation several of the rods are defined to be

air instead of GaAs. This structure is then excited by a TM mode on the left side of

the mesh.
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Figure 8.6: 2D photonic band gap mesh.
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Figure 8.7 shows the electric field magnitude for several timesteps of the simu-

lation. As the wave approaches the bend, it takes several periods to proceed. This

Figure 8.7: 2D Photonic band gap waveguide electric field magnitude.

is due to the diffraction occurring at the beginning of the bend. A wave encounter-

ing such an interface will take several periods before the diffraction constructively

interferes enough to propagate the wave.
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The PBG is a periodic structure, to truncate the large physical domain the com-

putationally domain is surrounded by a perfectly matched layer. These layers consist

of regions with nonzero electric and magnetic conductivity tangential to the propa-

gating direction. The conductivity tensors σE and σM have non-zero entries on the

two diagonal entries orthogonal to the propagation direction and all other entries are

zero. The conductivity increases from a very small initial value to a large value cu-

bically. The PML region is terminated with a perfect electrical conducting boundary

condition.

8.3 Sonic band gap waveguide

Sonic band gap (SBG) devices [70], [71] are the analog of the Photonic Band

Gap devices in the region of sound frequencies 20-20,000 Hz discussed in Section 8.2.

Instead of the optical regime the devices work in the region of sound frequencies. The

mesh consists of cylindrical aluminium rods in air. Normally a simulation involving

the acoustic wave equation would use the scalar pressure wave equation. The vector

velocity wave equation was chosen to show the synergy between the electrodynamics

PBG simulation and this SBG simulation. The structures are much larger than

the photonic band gap structure presented previously, centimeters versus microns,

however the same theory applies. Sonic band gap devices have been simulated using

the scalar pressure acoustic wave equation for simulations of metal rods in air [72]

with the same type of geometry as shown in Section 8.2. The transverse velocity

in these simulations can be neglected resulting in the scalar pressure wave equation.

Simulations of metal rods of one type embedded in a background metal of another
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type, e.g. aluminium rods in nickel, require the full elasticity equations [73].

In this section a sonic band gap device for aluminium rods in air will be simulated.

The aluminium rods are considered to be infinite in length and have a diameter of

1.7875 cm. They are spaced in a rectangular grid pattern at a distance of 5.5 cm

between their centers. The simulation proceeds using the sound speeds for each of

the materials. The true sound speeds at STP for air and aluminium are 330.14 m
s

and

6420.0 m
s

respectively. The relative sound speed in air is set to 1.0 while the relative

sound speed in aluminium is 19.27.

The domain is square surrounded by a fifteen layer PML. To show the synergy

between the Photonic band Gap and Sonic band Gap devices, the vector velocity

acoustic wave equation will be solved instead of the scalar pressure acoustic wave

equation. With this wave equation the PML is directed in the normal direction. The

normal component of the velocity field is attenuated as the wave travels into the PML

region. The concept is the same as in the PBG case except for the direction of the

dissipation. In the case of the electrodynamics simulation the conductivities were

non-zero orthogonal to the propagation direction. In the acoustic wave equation the

normal components of the field need to be attenuated. The PML tensor q in (8.4)

have nonzero entries for the diagonal component in the propagation direction and are

zero elsewhere.

∂2~u

∂t2
= ∇∇ · ~u− 2¯̄q

∂~u

∂t
− ¯̄q2~u (8.4)

A port for the velocity mode to enter is defined on the left hand side of the grid.

The velocity field will travel to the center of the grid, make a ninety-degree bend
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Figure 8.8: 2D sonic band gap mesh.
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upwards and be absorbed by the PML at the top. A time series of four times during

the simulation is shown in Figure 8.9.

Figure 8.9: 2D Sonic band gap waveguide velocity magnitude.
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Chapter 9

Conclusions

In this dissertation a discrete differential forms finite element based framework has

been presented. The discrete differential forms were implemented using the standard

nodal and discontinuous volume centered finite elements coupled with the vector

finite elements developed by Nédélec. Analyses of the operator accuracy, dispersion

and stability as well as simulations prove that the method is second order accurate.

Discrete vector operator analyses as well as discrete energy calculations show the

method is conservative. Simulations were presented for structured and unstructured

meshes in two and three-dimensions using three different types of finite elements. In

each case the method was shown to be accurate, stable and conservative. Simulations

for various types of linear wave equations were presented showing the method and

operators can be applied to a wide variety of problems.

In this dissertation it has been shown that the object oriented framework for wave

equations has the following properties.

• Discrete spaces that mimic continuous spaces.
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• Discrete differential operators that mimic continuous operators.

• Metric free discrete differential operators.

• Discrete spaces and differential operators that form exact sequences.

• Automatic conservation of energy, divergence free and curl free fields.

• Correct continuity of fields across material interfaces.

• Elimination of spurious modes.

• Well defined on structured and unstructured tessellations.

• Synergy between discrete simulation code for different differential forms.

• Second order accurate in space and time.

• Conditionally stable.

• Allows for scalar and tensor materials with spatial discontinuities.

Currently higher order basis functions as well as nonlinear materials and fields

are being researched using this framework as a basis. Future research in the appli-

cation of discrete differential forms to computational fluid dynamics and non-linear

magnetohydrodynamics as well as hybrid boundary-element-finite-element or coupled

discontinuous Galerkin-continuous Galerkin methods are all possible within the de-

fined framework.
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Appendix A

Reduced Unit Formulation for

Electrodynamics

In this appendix I discuss the reduced units. The equations (2.28) (2.27) can be

rewritten so that c = 1 and ε and µ are relative to the the vacuum permittivity and

permeability. Using reduced units requires that σE also be transformed into these

new units. This is important because the choice of σE sets the resistance.

A.0.1 Second Order Reduced Wave Equation

Starting with the relative ε = εrε0 and µ = µrµ0 and using c = 1√
ε0µ0

, multiply

(2.28) by µ0, this gives:

1

c2
∂2εr ~E

∂t2
= −∇× µ−1

r ∇× ~E − µ0σE
∂ ~E

∂t
− µ0

∂ ~J

∂t
(A.1)

Choose c = 1, this is the same as choosing a new time variable, τ = ct. Note

that the units of τ are now in meters. This time transformation leaves the new time

variable τ with units of [m] instead of [s]. The chain rule for the time derivatives is
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shown in (A.2).

∂x

∂t
=
∂x

∂τ

∂τ

∂t
= c

∂x

∂τ
(A.2)

Substituting (A.2) into (A.1) gives:

1

c2
c2
∂2εr ~E

∂τ 2
= −∇× µ−1

r ∇× ~E − cµ0σE
∂ ~E

∂τ
− cµ0

∂ ~J

∂τ
(A.3)

which reduces to:

∂2εr ~E

∂τ 2
= −∇× µ−1

r ∇× ~E −
√

µ0

ε0
σE
∂ ~E

∂τ
−

√

µ0

ε0

∂ ~J

∂τ
(A.4)

Now if the mesh is constructed in arbitrary units x̃ = bx, the chain rule for this

becomes:

∂ ~E

∂x
=
∂ ~E

∂x̃

∂x̃

∂x
= b

∂ ~E

∂x̃
(A.5)

This transforms the curl-curl term:

−∇× µ−1
r ∇× ~E → −b2∇× µ−1

r ∇× ~E (A.6)

Choosing a different time transformation τ = at gives:

1

c2
a2

b2
∂2εr ~E

∂τ 2
= −∇× µ−1

r ∇× ~E − µ0σE
a

b2
∂ ~E

∂τ
− µ0

a

b2
∂ ~J

∂τ
(A.7)

Choosing a = cb the final result is achieved:

τ = cbt (A.8)

∂2εr ~E

∂τ 2
= −∇× µ−1

r ∇× ~E −
√

µ0

ε0

σE

b

∂ ~E

∂τ
−

√

µ0

ε0

1

b

∂ ~J

∂τ

~E × n̂ = 0 on ΓD

∇× ~E × n̂ =
a

b

∂J(t)

∂t
on ΓN (A.9)

This gives the relative conductivity, using Z0 =
√

µ0

ε0
= 377 ohms,

σr = σE
Z0

b
. (A.10)
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A.0.2 First Order Reduced Wave Equation

Using the same transformations as in the section above the first order reduced

wave equation becomes:

1

c

∂εr ~E

∂τ
= −∇× µ−1

r
~B − µ0σE

b
~E − µ0

b
~J

c
∂µ−1

r
~B

∂τ
= −µ−1

r ∇× ~E

~E × n̂ = 0 on ΓD

∇× ~E × n̂ =
a

b

∂J(t)

∂t
on ΓN (A.11)
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Appendix B

Vector Identities

This appendix lists the vector identities used throughout the dissertation. The

values in the properties include scalars:α, vectors: ~A, ~B and ~C and tensors: ¯̄T .

~A · ( ~B × ~C) = ~B · ( ~C × ~A) = ~C · ( ~A× ~B) (B.1)

α∇ · ~A = ∇ · (α ~A)− ~A · ∇α (B.2)

∇ · ( ~A× ~B) = ~B · ∇ × ~A− ~A · ∇ × ~B (B.3)

∇ · ( ¯̄T · ~A) = (∇ · ¯̄T ) · ~A+ ¯̄T · ∇ ~A (B.4)

Tr(∇ ~A) = ∇ · ~A (B.5)

∇ · ∇ ~A = ∇∇ · ~A−∇×∇× ~A (B.6)
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